Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Controlled Release of Interleukin-2 from Biodegradable Microspheres

Abstract

We have evaluated the use of biodegradable poly(DL-lactide-co-glycolide) microspheres for the controlled release of interleukin-2 (IL-2) and its modified forms: succinyl IL-2 (SIL-2) and polyethylene glycol-modified IL-2 (PEG IL-2). We show that a microsphere formulation can be prepared from PEG IL-2 using HSA as an excipient which, after an initial burst, releases 2–3% PEG IL-2 per day in a bioactive form continuously over a 20- to 30-day period.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Smith, K.A. 1984. Interleukin 2. Ann. Rev. Immunol. 2: 319–333.

    Article  CAS  Google Scholar 

  2. Rosenberg, S.A., Spiess, P., Lafreniere, R. 1986. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 233: 1318–1321.

    Article  CAS  PubMed  Google Scholar 

  3. Ettinghausen, S.E., Rosenberg, S.A. 1986. Immunotherapies of murine sarcomas using lymphokine activated killer cells: optimization of the schedule and route of administration of recombinant interleukin-2. Cancer Res. 46: 2784–2792.

    CAS  PubMed  Google Scholar 

  4. Cheevar, M.A., Thompson, J.A., Peace, D.J., Greenberg, P.D. 1986. Potential uses of interleukin-2 in cancer therapy. Immunobiol. 172: 365–382.

    Article  Google Scholar 

  5. Rosenberg, S.A., Mule, J.J., Spies, P.J., Reichert, C.M., Scwarz, S.L. 1985. Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin-2 J. Exp. Med. 161: 1169–1188.

    Article  CAS  PubMed  Google Scholar 

  6. Lotze, M.T., Frana, L.W., Sharrow, S.O., Robb, R.J., Rosenberg, S.A. 1985. In vivo administration of purified human interleukin-2. Half-life and immunologic effects of jurkat cell line-derived interleukin-2. J. Immunol. 134: 157–166.

    CAS  PubMed  Google Scholar 

  7. Cheever, M.A., Thompson, J.A., Kern, D.E., Greenberg, P.D. 1985. Interleukin 2 (IL-2) administration in vivo: influence of IL-2 route and timing on T cell growth. J. Immunol. 134: 3895–3900.

    CAS  PubMed  Google Scholar 

  8. Nunberg, J.H., Doyle, M.V., York, S.M., York, C.J. 1989. Interleukin-2 acts as an adjuvant to increase the potency of inactivated rabies virus vaccine. Proc. Natl. Acad. Sci. USA 86: 4240–4243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Donohue, J.D., Rosenberg, S.A. 1983. The fate of interleukin-2 after in vivo administration. J. Immunol. 130: 2203–2208.

    CAS  PubMed  Google Scholar 

  10. Nishimura, T., Togashi, Y., Goto, M., Yagi, H., Uchiyama, Y., Hashimoto, Y. 1986. Augmentation of the therapeutic efficacy of adoptive tumor immunotherapy by in vivo administration of slowly released recombinant interleukin 2. Cancer Immunol. Immunother. 21: 12–18.

    Article  CAS  PubMed  Google Scholar 

  11. Morikawa, K., Okada, F., Hosokawa, M., Kobayashi, H. 1987. Enhancement of therapeutic effects of recombinant interleukin-2 on a transplantable rat ribrosarcoma by the use of a sustained release vehicle, Pluronic gel. Cancer Res. 47: 37–41.

    CAS  PubMed  Google Scholar 

  12. Matsuoka, J., Sakagami, K., Shiozaki, S., Uchida, S., Fujiwara, T., Gohchi, A., Orita, K. 1988. Development of an interleukin-2 slow delivery system. Trans. Am. Soc. Artif. Intern. Organs. 34: 729–731.

    CAS  Google Scholar 

  13. DeLoach, J.R., Andrews, K., Sheffield, C.L. 1988. Encapsulation of interleukin-2 in murine erythrocytes and subsequent deposition in mice receiving a subcutaneous injection. Biotechnol. Appl. Biochem. 10: 183–190.

    CAS  PubMed  Google Scholar 

  14. Cutright, D.E., Brady, J.M., Getter, L., Miller, R.A. 1976. USDC national technical information service report no. AD-AO25 988.

  15. Gilding, D.K., Reed, A.M. 1979. Biodegradable polymers for use in surgery-polyglycolic/polylactic acid homo- and copolymers:1. Polymer. 20: 1459–1464.

    Article  CAS  Google Scholar 

  16. Beck, L.R., Pope, V.Z., Flowers, Jr., C.E., Cowsar, D.R., Tice, T.R., Lewis, D.H., Dunn, R.L., Moore, A.B., Gilley, R.M. 1983. Poly(DL-lactide-co-glycolide)/northisterone microcapsules: an injectable biodegradable contraceptive. Biol. Reprod. 28: 186–195.

    Article  CAS  PubMed  Google Scholar 

  17. Redding, T.W., Schally, A.V., Tice, T.R., Meyer, W.M. 1984. Long-acting delivery systems for peptides: inhibition of rat prostrate tumors by controlled release of [D-Trp6]luteinizing hormone-releasing hormone from injectable microcapsules. Proc. Natl. Acad. Sci. USA 81: 5845–5848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sanders, L.M., Kent, J.S., McRae, G.I., Vickery, B.H., Tice, T.R., Lewis, D.H. 1984. Controlled release of a leutinizing hormone-releasing hormone analogue from poly(DL-lactide-co-glycolide) microspheres. J. Pharm. Sci. 73: 1294–1297.

    Article  CAS  PubMed  Google Scholar 

  19. Hutchinson, F.G., Furr, B.J.A. 1985. Biodegradable polymers for the sustained release of peptides. Biochem. Soc. Trans. 13: 520–523.

    Article  CAS  PubMed  Google Scholar 

  20. Singh, M., Taforo, T., Laderman, K., Rana, S. 1988. Release of a model protein from biodegradable poly(DL-lactide-co-glycolide) microcapsules. Proceed. Intern. Symp. Control. Rel. Bioact. Mater. 15: 456–457.

    Google Scholar 

  21. Katre, N., Knauf, M. 1988. Succinylated interleukin-2 for pharmaceutical compositions. PCT International Publication number WO 88/01511.

    Google Scholar 

  22. Katre, N.V., Knauf, M.J., Laird, W.J. 1987. Chemical modification of recombinant interleukin-2 by polyethylene glycol increases its potency in the murine Meth A sarcoma model. Proc. Natl. Acad. Sci. USA 84: 1487–1491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pitt, C.G., Gratzl, M.M., Jeffcoat, A.R., Zweidinger, R., Schindler, A. 1979. Sustained drug delivery systems II: factors affecting release rate from poly(-caprolactone) and related biodegradable polyesters. J. Pharm. Sci. 68: 1534–.

    Article  CAS  PubMed  Google Scholar 

  24. Visscher, G.E., Pearson, J.E., Fong, J.W., Argentieri, G.J., Robison, R.L., Maulding, H.V. 1988. Effect of particle size on the in vitro and in vivo degradation rates of poly(DL-lactide-co-glycolide) microcapsules. J. Biomed. Mater. Res. 22: 733–746.

    Article  CAS  PubMed  Google Scholar 

  25. Rosenberg, S.A., Grimm, E.A., McGrogan, M., Doyle, M., Kawasaki, E., Koths, K., Mark, D.F. 1984. Biological activity of recombinant human interleukin-2 produced in Escherichia coli. Science 223: 1412–1415.

    Article  CAS  PubMed  Google Scholar 

  26. Gillis, S., Ferm, M.M., Ou, W., Smith, K.A. 1978. T-cell growth factor: parameters of production and a quantitative microassay for activity. J. Immunol. 120: 2027–2032.

    CAS  PubMed  Google Scholar 

  27. Watson, J., 1979. Continuous proliferation of murine antigen-specific helper T-lymphocytes in culture. J. Exp. Med. 150: 1510–1519.

    Article  CAS  PubMed  Google Scholar 

  28. Gearing, A.J.H., Thorpe, R. 1988. The international standard for human interleukin-2. Calibration by international collaborative study. J. Immunol. Methods 114: 3–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hora, M., Rana, R., Nunberg, J. et al. Controlled Release of Interleukin-2 from Biodegradable Microspheres. Nat Biotechnol 8, 755–758 (1990). https://doi.org/10.1038/nbt0890-755

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0890-755

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing