Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Production of Transgenic Soybean Plants Using Agrobacterium-Mediated DNA Transfer

Abstract

Transgenic soybean plants have been produced using an Agrobacterium-mediated gene transfer system. This procedure relied on a regeneration protocol in which shoot organogenesis was induced on cotyledons of soybean genotypes selected for susceptibility to Agrobacterium. Cotyledon explants were inoculated with Agrobacterium tumefaciens pTiT37-SE harboring pMON9749 (conferring kanamycin resistance and β-glucuronidase “GUS” activity) or pTiT37-SEpMON894 (conferring kanamycin resistance and glyphosate tolerance) and cultured on shoot induction medium containing kanamycin. Plantlets were tested for gene insertion 3–4 months post-inoculation. Approximately 6% of the shoots (8 plants to date) produced on the kanamycin-selected cotyledons were transgenic based on assays for GUS expression, kanamycin resistance or glyphosate tolerance. Progeny from two of these plants demonstrated co-segregation of kanamycin resistance and either GUS expression or glyphosate tolerance in a 3:1 ratio indicating a single insert inherited in a Mendelian fashion.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. McCormick, S., Niedermeyer, J., Fry, J., Barnason, A., Horsch, R., and Fraley, R. 1986. Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Reports 5:81–84.

    Article  CAS  Google Scholar 

  2. Fillati, J.J., Kiser, J., Rose, R., and Comai, L. 1987. Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciens vector. Bio/Technology 5:726–730.

    Google Scholar 

  3. Fry, J., Barnason, A., and Horsch, R.B. 1987. Transformation of Brassica napus with Agrobacterium tumefaciens based vectors. Plant Cell Reports 6:321–325.

    Article  CAS  Google Scholar 

  4. Umbeck, P., Johnson, G., Barton, K., and Swain, W. 1987. Genetically transformed cotton (Gossypium hirustum L. ) plants. Bio/Technology 5:263–266.

    Article  CAS  Google Scholar 

  5. Basiran, N., Armitage, P., Scott, R.J., and Draper, J. 1987. Genetic transformation of flax (Linum usitatissimum) by Agrobacterium tumefaciens:regeneration of transformed shoots via a callus phase. Plant Cell Reports 6:396–399.

    Article  CAS  Google Scholar 

  6. Christou, P., Murphy, J.E., and Swain, W.F. 1982. Stable transformation of soybean by electroporation and root formation from transformed callus. Proc. Natl. Acad. Sci. USA. 84:3962–3966.

    Article  Google Scholar 

  7. Lin, W., Odell, J.T., and Schreiner, R.M. 1987. Soybean protoplast culture and direct gene uptake and expression by cultured soybean protoplasts. Plant Physiol. 84:856–861.

    Article  CAS  Google Scholar 

  8. Cheng, T-Y., Saka, H., and Voqui-Dinh, T.H. 1980. Plant regeneration from soybean cotyledonary node segments in culture. Plant Science Letters 19:91–99.

    Article  CAS  Google Scholar 

  9. Wright, M.S., Koehler, S.M., Hinchee, M.A., and Carnes, M.G. 1986. Plant regeneration by organogenesis in Glycine max. Plant Cell Reports 5:150–154.

    Article  CAS  Google Scholar 

  10. Barwale, U.B., Meyer, M.M. Jr., and Widholm, J.M. 1986. Screening of Glycine max and Glycine soja genotypes for multiple shoot formation at the cotyledonary node. Theor. Appl. Genet. 72:423–428.

    Article  CAS  Google Scholar 

  11. Wright, M.S., Ward, D.V., Hinchee, M.A., Carnes, M.G., and Kaufman, R.J. 1987. Regeneration of soybean (Glycine max L. Merr.) from cultured primary leaf tissue. Plant Cell Reports 6:83–89.

    CAS  PubMed  Google Scholar 

  12. Ranch, J.P., Oglesby, L., and Zielinski, A.C. 1985. Plant regeneration from embryo-derived tissue cultures of soybeans. In Vitro Cell. & Dev. Biol. 21:653–658.

    Article  Google Scholar 

  13. Lazzeri, P.A., Hildebrand, D.F., and Collins, G.B. 1985. A procedure for plant regeneration from immature cotyledon tissue of soybean. Plant Mol. Biol. Rep. 5:160–167.

    Article  Google Scholar 

  14. Ghazi, T.D., Cheema, H.V., and Nabors, M.W. 1986. Somatic embryogenesis and plant regeneration from embryogenic callus of soybean, Glycine max L. Plant Cell Reports 5:452–456.

    Article  CAS  Google Scholar 

  15. Barwale, U.B., Kerns, H.R., and Widholm, J.M. 1986. Plant regeneration from callus cultures of several soybean genotypes via embryo-genesis and organogenesis. Planta 167:473–481.

    Article  CAS  Google Scholar 

  16. Hammat, N. and Davey, M.R. 1987. Somatic embryogenesis and plant regeneration from cultured zygotic embryos of soybean (Glycine max L. Merr.). J. Plant Physiol. 128:219–226.

    Article  Google Scholar 

  17. Pedersen, H.C., Christiansen, J., and Wyndaele, R. 1983. Induction and in vitro culture of soybean crown gall tumors. Plant Cell Reports 2:201–204.

    Article  CAS  Google Scholar 

  18. Wang, L., Yin, G., Luo, J., Lei, B., Wang, T., Yao, Z., Li, X., Shao, Q., Jiang, X., and Zhou, Z. 1983. Proceedings First Internal. Symp. of Soybean in Tropical and Subtropical Countries.

  19. Owens, L.D. and Cress, D.E. 1985. Genotypic variability of soybean response to Agrobacterium strains harboring the Ti or Ri plasmids. Plant Physiol. 77:87–94.

    Article  CAS  Google Scholar 

  20. Byrne, M.C., McDonnell, R.E., Wright, M.S., and Carnes, M.G. 1987. Strain and cultivar specificity in the Agrobacterium-soybean interaction. Plant Cell, Tissue and Organ Culture 8:315.

    Article  CAS  Google Scholar 

  21. Hood, E.E., Chilton, W.S., Chilton, M-D., and Fraley, R.T. 1986. T-DNA and opine synthetic loci in tumors incited by Agrobactenum tumefaciens A281 on soybean and alfalfa plants. J. Bacteriol. 168:1283–1290.

    Article  CAS  Google Scholar 

  22. Kudirka, D.T., Colburn, S.M., Hinchee, M.A., and Wright, M.S. 1986. Interactions of Agrobacterium tumefaciens with soybean (Glycine max (L. ) Merr.) leaf explants in tissue culture. Can. J. Genet. Cytol. 28:808–817.

    Article  Google Scholar 

  23. Baldes, R., Moos, M., and Geider, K. 1987. Transformation of soybean protoplasts from permanent suspension cultures by cocultivation with cells of Agrobacterium tumefaciens. Plant Mol. Biol. 9:135–145.

    Article  CAS  Google Scholar 

  24. Jefferson, R.A. 1987. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5:387–405.

    Article  CAS  Google Scholar 

  25. Rogers, S.G., Klee, H.J., Horsch, R.B., and Fraley, R.T. 1987. Improved vectors for plant transformation: expression cassette vectors and new selectable markers. Methods in Enzymology 153:253–277.

    Article  CAS  Google Scholar 

  26. Sanders, P.R., Winter, J.A., Barnason, A.R., Rogers, S.G., and Fraley, R.T. 1987. Comparison of cauliflower mosaic virus 35S and nopaline synthase promoters in transgenic plants. Nucleic Acids Research 15:1543–1558.

    Article  CAS  Google Scholar 

  27. Fraley, R.T., Rogers, S.G., Horsch, R.B., Eichholtz, D.A., Flick, J.S., Fink, C.L., Hoffman, N.L., and Sanders, P.R. 1985. The SEV system: a new disarmed Ti plasmid vector system for plant transformation. Bio/Technology 3:629–635.

    CAS  Google Scholar 

  28. Faccioti, D., O'Neal, J.K., Lee, S., and Shewmaker, C.K. 1985. Light-inducible expression of a chimeric gene in soybean tissue transformed with Agrobacterium. Bio/Technology 3:241–246.

    Google Scholar 

  29. Michelmore, R., Marsh, E., Seely, S., and Landry, B. 1987. Transformation of lettuce (Lactuca sativa) mediated by Agrobacterium tumefaciens. Plant Cell Reports 6:439–442.

    CAS  PubMed  Google Scholar 

  30. Rhodes, C.A., Pierce, D.A., Mettler, I.J., Mascarenhas, D., and Detmer, J.J. 1988. Genetically transformed maize plants from protoplasts. Science 240:204–207.

    Article  CAS  Google Scholar 

  31. Gamborg, O.L., Miller, R.A., and Ojima, K. 1968. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50:152–158.

    Article  Google Scholar 

  32. Kay, R., Chan, A., Daly, M., and McPherson, J. 1987. Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236:1299–1302.

    Article  CAS  Google Scholar 

  33. Horsch, R.B., Fry, J.E., Hoffmann, N.L., Eichholtz, D., Rogers, S.G., and Fraley, R.T. 1985. A simple and general method for transferring genes into plants. Science 227:1229–1231.

    Article  CAS  Google Scholar 

  34. Schenk, R.U. and Hildebrandt, A.C. 1972. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can. J. Bot. 50:199–204.

    Article  CAS  Google Scholar 

  35. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497.

    Article  CAS  Google Scholar 

  36. Otten, L. and Schilperoort, R.A. 1978. A rapid microscale method tor the detection of lysopine and nopaline dehydrogenase activities. Biochm. Biophys. Acta 527:497–500.

    CAS  Google Scholar 

  37. McDonnell, R.E., Clark, R.D., Smith, W.A., and Hinchee, M.A. 1987. A simplified method for the detection of neomycin phosphotransferase II activity in transformed plant tissues. Plant Mol. Biol. Rep. 5:380–386.

    Article  CAS  Google Scholar 

  38. Della-Cioppa, G., Bauer, S.C., Klein, B.K., Shah, D.M., Fraley, R.T., and Kishore, G.M. 1987. Targeting a herbicide-resistant enzyme from Escherichia coli to chloroplasts of higher plants. Bio/Technology 5:579–584.

    CAS  Google Scholar 

  39. Bradford, M.M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    Article  CAS  Google Scholar 

  40. Murray, M.G. and Thompson, W.F. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8:4321–4325.

    Article  CAS  Google Scholar 

  41. Reed, K.C. and Mann, D.A. 1985. Rapid transfer of DNA from agarose gels to nylon membranes. Nucleic Acids Res. 13:7207–7221.

    Article  CAS  Google Scholar 

  42. Feinberg, A.P. and Vogelstein, B. 1983. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132:6–13.

    Article  CAS  Google Scholar 

  43. Jefferson, R.A., Burgess, S.M., and Hirsch, D. 1986. β-glucuronidase from Escherichia coli as a gene fusion marker. Proc. Natl. Acad. Sci. USA 83:8447–8451.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hinchee, M., Connor-Ward, D., Newell, C. et al. Production of Transgenic Soybean Plants Using Agrobacterium-Mediated DNA Transfer. Nat Biotechnol 6, 915–922 (1988). https://doi.org/10.1038/nbt0888-915

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0888-915

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing