Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Transgenic Plants of Brassica napus L.

Abstract

Longitudinal stem sections of Brassica napus L. cv. Westar were co–cultivated with Agrobacterium tumefaciens A208–E, carrying the disarmed plasmid pTiT37–SE and the binary vector pMON809. The vector contains a mouse mutant dihydrofolate reductase (dhfr) coding sequences driven by the cauliflower mosaic virus 35S promoter. Inoculated explants produce transgenic shoots in selective media containing methotrexate (MTX) at a frequency of 10%. The transgenic plants are phenotypically normal, express the 35S–dhfr mRNA and are resistant to high concentrations of MTX. The mouse mutant dhfr gene is transmitted to and expressed in the seed progeny as a dominant Mendelian trait.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Horsch, R.B., Fry, J.E., Hoffmann, N.L., Eichholtz, D., Rogers, S.G. and Fraley, R.T. 1985. A simple and general method for transferring genes into plants. Science 227: 1229–1231.

    Article  CAS  Google Scholar 

  2. Rogers, S.G., Horsch, R.B. and Fraley, R.T. 1986. Gene transfer in plants; production of transformed plants using Ti plasmid vectors. Methods in Enzymology 118: 627–640.

    Article  CAS  Google Scholar 

  3. Kuhlemeier, C., Green, P. and Chua, N.-H. 1987. Regulation of gene expression in higher plants. Annual Review of Plant Physiology 38: 221–257.

    Article  CAS  Google Scholar 

  4. Shah, D.M., Horsch, R.B., Klee, H.J., Kishore, G.M., Winter, J.A., Turner, N.E., Hironaka, C.M., Sanders, P.R., Gasser, C.S., Aykent, S., Siegel, N.R., Rogers, S.G. and Fraley, R.T. 1986. Engineering herbicide tolerance in transgenic plants. Science 233: 478–481.

    Article  CAS  Google Scholar 

  5. Abel, P.P., Nelson, R.S., De, B., Hoffmann, N., Rogers, S.G., Fraley, R.T. and Beachy, R.N. 1986. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232: 738–743.

    Article  CAS  Google Scholar 

  6. Fraley, R.T., Rogers, S.G., Horsch, R.B., Eichholtz, D.A., Flick, J.S., Fink, C.L., Hoffmann, N.L. and Sanders, P.R. 1985. The SEV system; a new disarmed Ti plasmid vector system for plant transformation. Bio/Technology 3: 629–635.

    CAS  Google Scholar 

  7. Zambryski, P., Joos, H., Genetello, C., Leemans, J., van Montagu, M., and Schell, J. 1983. Ti plasmid vector for the introduction of DNA to plant cells without alteration of their normal regeneration capacity. EMBO J. 2: 2143–2150.

    Article  CAS  Google Scholar 

  8. De Block, M., Herrera-Estrella, L., Van Montagu, M., Schell, J. and Zambryski, P. 1984. Expression of foreign genes in regenerated plants and their progeny. EMBO J. 3: 1681–1684.

    Article  CAS  Google Scholar 

  9. Horsch, R.B., Fraley, R.T., Rogers, S.G., Sanders, P.R., Lloyd, A. and Hoffmann, N. 1984. Inheritance of functional foreign genes in plants. Science 223: 496–498.

    Article  CAS  Google Scholar 

  10. Shillito, R.D., Saul, M.W., Paszkowski, J., Muller, M. and Potrykus, I. 1985. High efficiency direct gene transfer to plants. Bio/Technology 3: 1099–1103.

    Google Scholar 

  11. Lloyd, A.M., Barnason, A.R., Rogers, S.G., Byrne, M.C., Fraley, R.T. and Horsch, R.B. 1986. Transformation of Arabidopsis thaliana with Agrobacterium tumefaciens . Science 234: 464–466.

    Article  CAS  Google Scholar 

  12. Deak, M., Kiss, G.B., Koriz, C. and Dudits, D. 1986. Transformation of Medicago by Agrobacterium mediated gene transfer. Plant Cell Reports 5: 97–100.

    Article  CAS  Google Scholar 

  13. Shahin, E.A. and Simpson, R.B. 1986. Gene transfer system for potato (Solanum tuberosum L.). Hort. Science 21: 1199–1201.

    CAS  Google Scholar 

  14. Austin, R.B., Flavell, R.B., Hensen, I.E., Lowe, H.G.B. (eds.). 1986. In: Molecular Biology of Crop Improvement, p. 70–87, Cambridge University Press, Cambridge.

    Google Scholar 

  15. Zee, S.Y. and Johnson, B.B. 1984. Cole Crops, p. 227–246. In: Handbook of Plant Cell Culture, Vol. 3, Crop Species. Ammirato, P., Evans, D. A., Sharp, W. R., and Yamada, Y. (eds.). Macmillan Publ. Co., NY.

    Google Scholar 

  16. Holbrook, L.A. and Miki, B.L. 1985. Brassica crown gall tumorigenesis and in vitro of transformed tissue. Plant Cell Reports 4: 329–332.

    Article  CAS  Google Scholar 

  17. Eichholtz, L.A., Rogers, S.G., Horsch, R.B., Klee, H.J., Hayford, M., Hoffmann, N.L., Braford, S.B., Fink, C., Flick, J., O'Connell, K.M., and Fraley, R.T. 1987. Expression of mouse dihydrofolate reductase gene confers methotrexate resistance in transgenic petunia plants. Somatic Cell Mol. Genet. 13: 67–76.

    Article  CAS  Google Scholar 

  18. Glimelius, K. 1984. High growth rate and regeneration capacity of hypocotyl protoplasts in some Brassicaceae . Physiol. Plant. 61: 38–44.

    Article  CAS  Google Scholar 

  19. Dunwell, J.M. 1981. In vitro regeneration from excised leaf discs of three Brassica species. J. Experimental Botany 32: 789–799.

    Article  Google Scholar 

  20. Stringam, G.R. 1977. Regeneration in stem explants of haploid rapeseed (Brassica napus L.). Plant Sci. Lett. 9: 115–119.

    Article  CAS  Google Scholar 

  21. Paszkowski, J., Pisan, B., Shillito, R.D., Hohn, T., Hohn, B. and Potrykus, I. 1986. Genetic transformation of Brassica campestris var. Rapa protoplasts with an engineered Cauliflower Mosaic Virus genome. Plant Mol. Biol. 6: 303–312.

    Article  CAS  Google Scholar 

  22. Ooms, G., Bains, A., Burrell, M., Karp, A., Twell, D., and Wilcox, E. 1985. Genetic manipulation in cultivars of oilseed rape (Brassica napus) using Agrobacterium . Theor. Appl. Genet. 71: 325–329.

    Article  CAS  Google Scholar 

  23. Guerche, P., Jouanin, L., Tepfer, D. and Pelletier, G. 1987. Genetic transformation of oilseed rape (Brassica napus) by the Ri-T-DNA of Agrobacterium rhizogenes and analysis of inheritance of the transformed phenotype. Mol. Gen. Genet. In press.

  24. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497.

    Article  CAS  Google Scholar 

  25. Horsch, R.B. and Klee, H.J. 1986. Rapid assay of foreign gene expression in leaf discs transformed by Agrobacterium tumefaciens: role of T-DNA borders in the transfer process. Proc. Nad. Acad. Sci. USA 83: 4428–4432.

    Article  CAS  Google Scholar 

  26. Chirgwin, J.M., Przybyla, A.E., MacDonald, R.J. and Rutter, W.J. 1979. Isolation of biologically active RNA from sources enriched in ribonuclease. Biochemistry 18: 5294–5304.

    Article  CAS  Google Scholar 

  27. Glisen, V., Crkvenjakov, R. and Byus, C. 1974. Ribonucleic acid isolated by cesium chloride centrifugation. Biochemistry 13: 2633–2637.

    Article  Google Scholar 

  28. Carmichael, G.G. and McMaster, G.R. 1980. The analysis of nucleic acids in gels using glyoxal and acridine orange. Methods in Enzymology 65: 380–391.

    Article  CAS  Google Scholar 

  29. Thomas, P.S. 1980. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc. Natl. Acad. Sci. USA 77: 5201–5205.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pua, EC., Mehra-Palta, A., Nagy, F. et al. Transgenic Plants of Brassica napus L.. Nat Biotechnol 5, 815–817 (1987). https://doi.org/10.1038/nbt0887-815

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0887-815

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing