Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synergism of Cellulases from Trichoderma reesei in the Degradation of Cellulose

Abstract

The action of cellobiohydrolases I and II (CBHI and CBHII) and endoglucanases I and II (EGI and EGII) purified from Tri-choderma reesei was evaluated against various substrates. CBHI degraded the β-D-glucan from barley in a typical endo pattern. With cellulose substrates, the synergism between CBHI and endoglucanase I or II depended on the structural and ultrastructural features of the substrate. This effect, unrelated to endo-exo cooperation, was found with substrates of intermediate crystallinity whereas weak or no synergism was recorded with cellulose microcrystals or the soluble carboxy-methyl cellulose derivative. Synergistic degradation of cellulose was also recorded with mixtures of CBHI and CBHII. On the other hand, synergism between endoglucanases and CBHII followed the pattern expected for an endo-exo cooperation. These results presented support evidence for multiple types of cooperation between the cellulolytic enzymes.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Ladisch, M.R., Lin, K.W., Voloch, M. and Tsao, G.T. 1983. Process considerations in the enzymatic hydrolysis of biomass. Enzyme Microbiol. Technol. 5: 82–102.

    CAS  Article  Google Scholar 

  2. Wood, T.M. and McCrae, S.I. 1972. The purification and properties of the C1 component of Trichoderma koningii cellulase. Biochem. J. 128: 1183–1192.

    CAS  Article  Google Scholar 

  3. Berghem, L.E.R. and Pettersson, L.G. 1973. The mechanism of enzymtic cellulose degradation. Purification of a cellulolytic enzyme from Trichoderma viride active on highly ordered cellulose. Eur. J. Biochem. 37: 21–30.

    CAS  Article  Google Scholar 

  4. Van Tilbeurgh, H., Claeyssens, M. and DeBruyne, C.K. 1982. The use of 4-methylumbelliferyl and other chromophoric glycosides in the study of cellulolytic enzymes. FEBS Lett. 149: 152–156.

    CAS  Article  Google Scholar 

  5. Sasaki, T., Tanaka, T., Nanbu, N., Sato, Y. and Kainuma, K. 1979. Correlation between X-ray diffraction measurements of cellulose crystalline structure and the susceptibility to microbial cellulase. Biotechnol. Bioeng. 21: 1031–1042.

    CAS  Article  Google Scholar 

  6. Chanzy, H., Henrissat, B., Vuong, R. and Schülein, M. 1983. The action of 1,4-β-D-glucan cellobiohydrolase on Valonia cellulose microcrystals. An electron miscroscopy study. FEBS Lett. 153: 113–118.

    CAS  Article  Google Scholar 

  7. Fägerstam, L.G. and Pettersson, L.G. 1980. The 1,4-β-D-glucan cellobiohydrolases of Trichoderma reesei QM 9414. A new type of cellulolytic synergism. FEBS Lett. 119: 97–100.

    Article  Google Scholar 

  8. Chanzy, H., Henrissat, B. and Vuong, R. 1984. Colloidal gold labelling of 1,4-β-D-glucan cellobiohydrolase adsorbed on cellulose substrates. FEBS Lett. 172: 193–197.

    CAS  Article  Google Scholar 

  9. Schülein, M., Schiff, H.E., Schneider, P. and Dambmann, C. 1981. Immunoelectrophoretic characterization of cellulolytic enzymes from Trichoderma reesei, p. 97–105. In: Bioconversion and Biochemical Engineering Symposium 2., Vol. 1. T.K. Ghose (ed.), New-Delhi.

    Google Scholar 

  10. Sandell, L.S. and Luner, P. 1974. Flocculation of microcrystalline cellulose with cationic ionene polymers. J. Appl. Polym. Sci. 18: 2075–2083.

    CAS  Article  Google Scholar 

  11. Hestrin, S. 1963. Bacterial cellulose. Methods Carbohydr. Chem. 3: 4–9.

    CAS  Google Scholar 

  12. Chanzy, H. and Henrissat, B. 1983. Electron microscopy study of the enzymic hydrolysis of Valonia cellulose. Carbohydr. Polym. 3: 161–173.

    CAS  Article  Google Scholar 

  13. Gardner, K.H. and Blackwell, J. 1974. The structure of native cellulose. Biopolymers 13: 1975–2001.

    CAS  Article  Google Scholar 

  14. Woodward, J.R., Phillips, D.R. and Fincher, G.B. 1983. Water-soluble (1→3),(1→4)-β-D-glucans from barley (Hordeum vulgare) endosperm. I. Physicochemicar properties. Carbohydr. Polym. 3: 143–156.

    CAS  Article  Google Scholar 

  15. Dais, P. and Perlin, A.S. 1982. High-field, 13C-N.M.R. spectroscopy of β-D-glucans, amylopectin and glycogen. Carbohydr. Res. 100: 103–116.

    CAS  Article  Google Scholar 

  16. Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428.

    CAS  Article  Google Scholar 

  17. Kulshreshtha, A.K. and Dweltz, N.E. 1973. Paracrystalline lattice disorder in cellulose. Reappraisal of the application of the two-phase hypothesis to the analysis of powder X-ray diffractograms of native and hydrolyzed cellulosic materials. J. Polym. Sci., Polym. Phys. Ed. 11: 487–497.

    CAS  Article  Google Scholar 

  18. Grethlein, H.E. 1985. The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates. Bio/Technology 3: 155–160.

    CAS  Article  Google Scholar 

  19. Staudte, R.G., Woodward, J.R., Finches, G.B. and Stone, B.A. 1983. Water soluble (1→3),(1→4)-β-D-glucans from barley (Hordeum vulgare) endosperm. Distribution of cellotriosyl and cellotetraosyl residues. Carbohydr. Polym. 3: 299–312.

    CAS  Article  Google Scholar 

  20. Nisizawa, K. 1973. Mode of the action of cellulases. J. Ferment. Technol. 51: 267–304.

    CAS  Google Scholar 

  21. Shoemaker, S., Watt, K., Tsitovsky, G. and Cox, R. 1983. Characterization and properties of cellulases purified from Trichoderma reesei strain L27. Bio/Technology 1: 687–690.

    CAS  Google Scholar 

  22. Toda, S., Suzuki, H. and Nisizawa, K. 1971. Some enzymic properties and the substrate specificities of Trichoderma cellulases with special reference to their activity toward xylan. J. Ferment. Technol 49: 499–521.

    CAS  Google Scholar 

  23. Streamer, M., Eriksson, K.E. and Pettersson, B. 1975. Extracellular enzyme system utilized by the fungus Sporotrichum pulverulentum (Chrysosporium lignorum) for the breakdown of cellulose. Functional characterization of five endo-1,4-β-D-glucanases and one exo-1,4-β-D-glucanase. Eur. J. Biochem. 59: 607–613.

    CAS  Article  Google Scholar 

  24. Chanzy, H. and Henrissat, B. 1985. Unidirectional degradation of Valonia cellulose microcrystals subjected to cellulase action. FEBS Lett. 184: 285–288.

    CAS  Article  Google Scholar 

  25. Robyt, J. and French, D. 1967. Multiple attack hypothesis of α-amylase action: Action of porcine pancreatic, human salivary, and Aspergillus oryzae α-amylases. Arch. Biochem. Biophys. 122: 8–16.

    CAS  Article  Google Scholar 

  26. Maguire, R.J. 1977. Kinetics of the hydrolysis of cellulose by a 1,4-β-D-glucan cellobiohydrolase of Trichoderma viride. Can. J. Biochem. 55: 644–650.

    CAS  Article  Google Scholar 

  27. Reese, E.T. 1982. Elution of cellulase from cellulose. Proc. Biochem. 17: 2–6.

    CAS  Google Scholar 

  28. Sprey, B. and Lambert, C. 1983. Titration curves of cellulases from Trichoderma reesei: demonstration of a cellulase-xylanase-β-glucosidase containing complex. FEMS Microbiol. Lett. 18: 217–222.

    CAS  Google Scholar 

  29. Rabinovitch, M.L., Van Viet, N. and Klesov, A.A. 1982. Adsorption of cellulolytic enzymes on cellulose and kinetics of the action of adsorbed enzymes. Two types of interaction of the enzymes with an insoluble substrate. Biokhimiya 47: 465–477.

    Google Scholar 

  30. Ryu, D.D.Y., Kim, C. and Mandels, M. 1984. Competitive adsorption of cellulase components and its significance in a synergistic mechanism. Biotechnol. Bioeng. 26: 488–496.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Henrissat, B., Driguez, H., Viet, C. et al. Synergism of Cellulases from Trichoderma reesei in the Degradation of Cellulose. Nat Biotechnol 3, 722–726 (1985). https://doi.org/10.1038/nbt0885-722

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0885-722

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing