

altered DNA. Finally, we will characterize quantitatively and qualitatively the mutagenic changes induced in daughter DNA molecules, and attempt to establish formal rules that relate the structure of a lesion, and possibly its persistance in DNA, with its biological effects.

TITLE: Immunoglobulin Gene Splicing In Vitro INVESTIGATOR: Frederick R. Blattner INSTITUTION: University of Wisconsin Madison

SOURCE: NIH

... We wish to investigate the DNA splicing mechanism by which immunoglobulin variable region genes are assembled, an essential part of the generation of immunoglobulin diversity. An *in vitro* system capable of splicing V and J genes will be developed, using a specially engineered lambda phage as the splicing template. In this way the splicing mechanism may be completely characterized and the splicing enzyme(s) identified.

HYBRIDOMAS AND MICROBIAL STRAINS

The American Type Culture Collection (ATCC), a non-profit organization located in Rockville, Maryland, recently made the following materials available for distribution to biotechnologists in industry and academia. This is the first published listing of these materials, which may be ordered from the Collection by using the ATCC[®] number.

HYBRIDOMAS

The following two hybridoma lines were submitted by Dr. D. Korn, Laboratory of Experimental Oncology, Stanford University School of Medicine, Stanford, CA. They were first described in Tanaka *et al.*, J. Biol. Chem. **257**:8386, 1982, and Bensch *et al.*, J. Biol. Chem. **257**:8391, 1982. duces an IgG₁ monoclonal antibody which reacts with DNA polymerase. Titre: 7 ng binds 50% of 1 unit DNA polymerase activity. TIB 178 exhibits no neutralizing activity against DNA polymerase. The line was produced by fusing spleen cells from (BALB/c \times C57BL/6)Fl mice immunized with polymerase Fraction VIII with NS-1 plasmacytoma cells.

The hybrid cell line produces an IgG₁ monoclonal antibody which reacts with DNA polymerase. Titre: 5 ng binds 50% of 1 unit DNA polymerase activity. TIB 179 exhibits neutralizing activity against DNA polymerase with a titre of 60 ng. The line was produced by fusing spleen cells from (BALB/c \times C57BL/6)Fl mice immunized with polymerase Fraction VIII with NS-1 plasmacytoma cells.

TIB 178 (Anti-DNA polymerase) The hybrid cell line TIB 178 pro- | TIB 179 (Anti-DNA polymerase)

NEW POLES FOR RACTERIA

ILLE ILVERO I OIL BRIGISH			
New Production	Bacterium	U.S. Patent No.	ATCC [®] No.
Animal enteric colibacillosis vaccine Gentamicins Antibiotic prodigiosin Neoviridogriseins I, II, and III	Escherichia coli Micromonospora purpurea Serratia marcescens Streptomyces sp.	4,338,298 4,288,547 4,266,028 4,355,112	31616 thru 31619 31536 31453 31289

NEW ROLES FOR FUNGI

New Production	Fungus	Reference	ATCC [®] No.
β-glucosidase	Aspergillus phoenicis	Biotechnol. Bioeng. 24: 2747–2751, 1982	52007
Ethanol from cellobiose	Candida lusitaniae	Biotechnol. Lett. 4: 453–458, 1982 Biotechnol. Bioeng. 25: 541–557, 1983	34449
Biomass and β -D-galactosidase	Candida pseudotropicalis	Biotechnol. Bioeng. 25:1341-1351, 1983	44691
Ethanol from cellodextrins and cellobiose	Candida wickerhamii	Biotechnol. Lett. 4: 453–458, 1982 Biotechnol. Bioeng. 25: 541–557, 1983	36540
Ethanol from D-xylose	Candida sp.	U.S. Patent 4,368,268	20615
α-amylase	Paecilomyces sp.	J. Ferm. Technol. 61: 109–112, 1983	46889
β-glucosidase	Aspergillus terreus	Appl. Environ. Microbiol. 44:1289–1295, 1982	20514
Proteinase	Candida albicans	J. Can. Microbiol. 129: 431–438, 1983	28366
Extracellular proteases	Lagenidium giganteum	Exp. Mycol. 7: 31–39, 1983	36492