Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Directed evolution of the surface chemistry of the reporter enzyme β-glucuronidase

Abstract

The use of the Escherichia coli enzyme β-glucuronidase (GUS) as a reporter in gene expression studies is limited due to loss of activity during tissue fixation by glutaraldehyde or formaldehyde. We have directed the evolution of a GUS variant that is significantly more resistant to both glutaraldehyde and formaldehyde than the wild-type enzyme. A variant with eight amino acid changes was isolated after three rounds of mutation, DNA shuffling, and screening. Surprisingly, although glutaraldehyde is known to modify and cross-link free amines, only one lysine residue was mutated. Instead, amino acid changes generally occurred near conserved lysines, implying that the surface chemistry of the enzyme was selected to either accept or avoid glutaraldehyde modifications that would normally have inhibited function. We have shown that the GUS variant can be used to trace cell lineages in Xenopus embryos under standard fixation conditions, allowing double staining when used in conjunction with other reporters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Screen for glutaraldehyde-resistant β-glucuronidase (GUS) function (sequence from top left).
Figure 2: Detection of glutaraldehyde-resistant GUS activity.
Figure 3: GUS catalytic activity as a function of aldehyde concentration.
Figure 4: Homology mapping of amino acid substitutions that confer aldehyde resistance.
Figure 5: Expression of GUSAR in Xenopus embryos.
Figure 6: Multiple marker staining of Xenopus embryos.

Similar content being viewed by others

References

  1. Jefferson, R.A., Burgess, S.M. & Hirsh, D. Beta-glucuronidase from Escherichia coli as a gene-fusion marker. Proc. Natl. Acad. Sci. USA 83, 8447–8451 (1986).

    Article  CAS  Google Scholar 

  2. Martin, T., Woehner, R-V., Hummel, S., Willmitzer, L. & Frommer, W.B. in GUS Protocols: using the GUS gene as a reporter of gene expression. (ed. Gallagher, S.R.). 23–43 Academic Press, New York; 1992).

    Google Scholar 

  3. Naleway, J.J. in GUS Protocols: using the GUS gene as a reporter of gene expression. (ed. Gallagher, S.R.). 61–76 (Academic Press, New York; 1992).

    Book  Google Scholar 

  4. Farrell, L.B. & Beachy, R.N. Manipulation of beta-glucuronidase for use as a reporter in vacuolar targeting studies. Plant Mol. Biol. 15, 821–825 (1990).

    Article  CAS  Google Scholar 

  5. Craig, S., in GUS Protocols: using the GUS gene as a reporter of gene expression (ed. Gallagher, S.R.) 115–124 (Academic Press, New York; 1992).

    Book  Google Scholar 

  6. Jefferson, R.A. The GUS reporter gene system. Nature 342, 837–838 (1989).

    Article  CAS  Google Scholar 

  7. Habeeb, A.F.S.A. & Hiramoto, R. Reactions of proteins with glutaraldehyde. Arch. Biochem. Biophys. 126:16–26 (1968).

    Article  CAS  Google Scholar 

  8. Schlaman, H.R., Risseeuw, E., Franke-van Dijk, M.E. & Hooykaas, PJ. Nucleotide sequence corrections of the uidA open reading frame encoding beta-glucuronidase. Gene 138, 259–260 (1994).

    Article  CAS  Google Scholar 

  9. Oshima, A. et al. Cloning, sequencing, and expression of cDNA for human beta-glucuronidase. Proc. Natl. Acad. Sci. USA 84, 685–689 (1987).

    Article  CAS  Google Scholar 

  10. D'Amore, M.A., Gallagher, P.M., Korfhagen, T.R. & Ganschow, R.E. The complete sequence and organization of the murine beta-glucuronidase gene. Biochemistry 27, 7131–7140 (1988).

    Article  CAS  Google Scholar 

  11. Nishimura, Y. et al. Nucleotide sequence of rat preputial gland beta-glucuronidase cDNA and in vitro insertion of its encoded polypeptide into microsomal membranes. Proc. Natl. Acad. Sci. USA 83, 7292–7296 (1986).

    Article  CAS  Google Scholar 

  12. Ray, J. et al. Cloning of canine beta-glucuronidase cDNA, mutation identification in canine MPS VII, and retroviral vector-mediated correction of MPS VII cells. Genomics 48, 248–253 (1988).

    Article  Google Scholar 

  13. Zhang, J.H., Dawes, G. & Stemmer, W.P. Directed evolution of a fucosidase from a galactosidase by DNA shuffling and screening. Proc Natl Acad Sci USA 94, 4504–4509 (1997).

    Article  CAS  Google Scholar 

  14. Giver, L., Gershenson, A., Freskgard, P.O. & Arnold, F.H. Directed evolution of a thermostable esterase. Proc. Natl. Acad. Sci. USA 95, 12809–12813 (1998).

    Article  CAS  Google Scholar 

  15. Cadwell, R.C. & Joyce, G,F. Randomization of genes by PCR mutagenesis. PCR Methods Appl. 2, 28–33 (1992).

    Article  CAS  Google Scholar 

  16. Blanco, C. & Nemoz, G. One step purification of Escherichia coli beta-glucuronidase. Biochimie 69, 157–161 (1987).

    Article  CAS  Google Scholar 

  17. Stemmer, W.P.C. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA 91:10747–10751 (1994).

    Article  CAS  Google Scholar 

  18. Jain, S., Drendel, W.B., Chen, Z.W., Mathews, F.S., Sly, W.S. & Grubb, J.H. Structure of human beta-glucuronidase reveals candidate lysosomal targeting and active-site motifs. Nat. Struct. Biol. 3, 375–381 (1996).

    Article  CAS  Google Scholar 

  19. Needleman, S.B. & Wunsch, C.D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453 (1970).

    Article  CAS  Google Scholar 

  20. Kozak, M. An analysis of 5´-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 15, 8125–8148 (1987).

    Article  CAS  Google Scholar 

  21. Moore, J.C. & Arnold, F.H. Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents. Nat. Biotechnol. 14, 458–467 (1996).

    Article  CAS  Google Scholar 

  22. Zhang, X.J., Baase, W.A., Shoichet, B.K., Wilson, K.P. & Matthews, B.W. Enhancement of protein stability by the combination of point mutations in T4 lysozyme is additive. Protein Eng. 8, 1017–1022 (1995).

    Article  CAS  Google Scholar 

  23. Holm, L. & Sander, C. Mapping the protein universe. Science 273, 595–603 (1996).

    Article  CAS  Google Scholar 

  24. van der Loos, C.M., Becker, A.E. & van den Oord, J.J. Practical suggestions for successful immunoenzyme double-staining experiments. Histochem. J. 25, 1–13 (1993).

    Article  CAS  Google Scholar 

  25. Wallingford, J., Seufert, D., Virta, V. & Vize, P. p53 Activity is essential for normal development in Xenopus laevis. Curr. Biol. 7, 747–757 (1997).

    Article  CAS  Google Scholar 

  26. Wallingford, J., Carroll, T. & Vize, P. Precocious expression of the Wilms' tumor gene xWT1 inhibits embryonic kidney development in Xenopus laevis. Dev. Biol. 202, 103–112 (1998).

    Article  CAS  Google Scholar 

  27. Raz, E., Zlokarnik, G., Tsien, R.Y. & Driever, W. Beta-lactamase as a marker for gene expression in live zebrafish embryos. Dev. Biol. 203, 290–294 (1998).

    Article  CAS  Google Scholar 

  28. Grimm, E. & Arbuthnot, P. Rapid purification of recombinant Taq DNA polymerase by freezing and high temperature thawing of bacterial expression cultures. Nucleic Acids Res. 23, 4518–4519 (1995).

    Article  CAS  Google Scholar 

  29. King, P.V. & Blakesley, R.W. Optimizing DNA ligations for transformations. FOCUS 8, 30–32 (1986).

    Google Scholar 

  30. Inoue, H., Nojima, H. & Okayama, H. High efficiency transformation of Escherichia coli with plasmids. Gene 96, 23–28 (1990).

    Article  CAS  Google Scholar 

  31. Krieg, P.A. & Melton, D.A. Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res. 12, 7057–7070 (1984).

    Article  CAS  Google Scholar 

  32. Krieg, P. & Johnson, A. in A laboratory guide to RNA: isolation, analysis, and synthesis. (ed. Krieg, P.) 141–153 (Wiley-Liss, New York; 1996).

    Google Scholar 

  33. Peng, H.B. Solutions and protocols. Methods Cell Biology 36, 657–662 (1991).

    Article  CAS  Google Scholar 

  34. Vize, P., Melton, D., Hemmati–Brivanlou, A. & Harland, R. Asssays for gene function in developing Xenopus embryos. 36, 367–387 (1991).

Download references

Acknowledgements

We thank the Office of Naval Research for funding. I.M. was supported by a National Science Foundation/Alfred P. Sloan Postdoctoral Research Fellowship in Molecular Evolution (DBI-9750002). We thank Dr. Mary Berlyn of the E. coli Genetic Stock Center for sending us strain GMS407 and Ms. Sabine Bell for synthesizing oligonucleotides. Finally, we thank members of the Ellington group and Dr. William Wu of Ambion for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. Ellington.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsumura, I., Wallingford, J., Surana, N. et al. Directed evolution of the surface chemistry of the reporter enzyme β-glucuronidase. Nat Biotechnol 17, 696–701 (1999). https://doi.org/10.1038/10910

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/10910

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing