Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Tumor protease-activated, pore-forming toxins from a combinatorial library

Abstract

We describe a library of two-chain molecular complementation mutants of staphylococcal α-hemolysin that features a combinatorial cassette encoding thousands of protease recognition sites in the central pore-forming domain. The cassette is flanked by a peptide extension that inactivates the protein. We screened the library to identify α-hemolysins that are highly susceptible to activation by cathepsin B, a protease that is secreted by certain metastatic tumor cells. Toxins obtained by this procedure should be useful for the permeabilization of malignant cells thereby leading directly to cell death or permitting destruction of the cells with drugs that are normally membrane impermeant.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bhakdi, S. and Tranum-Jensen, J. 1991. Alpha-toxin of Staphylococcus aureus . Microbiol. Rev. 55: 733–751.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gouaux, J.E., Braha, O., Hobaugh, M.R., Song, L., Cheley, S., Shustak, C., and Bayley, H. 1994. Subunit stoichiometry of staphylococcal α-hemolysin in crystals and on membranes: a heptameric transmembrane pore. Proc. Natl. Acad. Sci. USA 91: 12828–12831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ward, R.J., Palmer, M., Leonard, K., and Bhakdi, S. 1994. Identification of a putative membrane-inserted segment in the α-toxin of Staphylococcus aureus . Biochemistry 33: 7477–7484.

    Article  CAS  PubMed  Google Scholar 

  4. Walker, B., Kasianowicz, J., Krishnasastry, M., and Bayley, H. 1994. A pore-forming protein with a metal-actuated switch. Protein Eng. 7: 655–662.

    Article  CAS  PubMed  Google Scholar 

  5. Valeva, A., Weisser, A., Walker, B., Kehoe, M., Bayley, H., Bhakdi, S., and Palmer, M. 1996. Molecular architecture of a toxin pore: a 15-residue sequence lines the transmembrane channel of staphylococcal alpha-toxin. EMBO J. 15: 1857–1864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bayley, H. 1995. Pore-forming proteins with built-in triggers and switches. Bioorg. Chem. 23: 340–345.

    Article  CAS  Google Scholar 

  7. Walker, B.J. and Bayley, H. 1994. A pore-forming protein with a protease-activated trigger. Protein Eng. 7: 91–97.

    Article  CAS  PubMed  Google Scholar 

  8. Sloane, B.F., Dunn, J.R., and Honn, K.V. 1981. Lysosomal cathepsin B: correlation with metastatic potential. Science 212: 1151–1153.

    Article  CAS  PubMed  Google Scholar 

  9. Recklies, A.D., Poole, A.R., and Mort, J.S. 1982. A cysteine protease secreted from human breast tumours is immunologically related to cathepsin B. Biochem. J. 207: 633–636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Keppler, D., Abrahamson, M., and Sordat, B. 1994. Secretion of cathepsin B and tumour invasion. Biochem. Soc. Trans. 22: 43–49.

    Article  CAS  PubMed  Google Scholar 

  11. Schwartz, M.K. 1995. Tissue cathepsins as tumor markers. Clin. Chim. Acta 237: 67–78.

    Article  CAS  PubMed  Google Scholar 

  12. Kobayashi, H., Schmitt, M., Goretzki, L., Chucholowski, N., Calvete, J., Kramer, M., Günzler, W.A., Jänicke, F., and Graeff, H. 1991. Cathepsin B efficiently activates the soluble and the tumor cell receptor-bound form of the proenzyme urokinase-type plasminogen activator (pro-uPA). J. Biol. Chem. 266: 5147–5152.

    CAS  PubMed  Google Scholar 

  13. Arkin, A.P. and Youvan, D.C. 1992. Optimizing nucleotide mixtures to encode specific subsets of amino acids for semi-random mutagenesis. Biotechnology 10: 297–300.

    CAS  PubMed  Google Scholar 

  14. Johnson, B.H. and Hecht, M.H. 1994. Recombinant proteins can be isolated from E. coli cells by repeated cycles of freezing and thawing. Biotechnology 12: 1357–1360.

    CAS  PubMed  Google Scholar 

  15. Barrett, A.J. and Kirschke, H. 1981. Cathepsin B, cathepsin H, and cathepsin L. Methods Enzymol. 80: 535–561.

    Article  CAS  PubMed  Google Scholar 

  16. Khouri, H.E., Plouffe, C., Hasnain, S., Hirama, T., Storer, A.C., and Ménard, R. 1991. A model to explain the pH-dependent specificity of cathepsin B-catalysed hydrolyses. Biochem. J. 275: 751–757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ullman, D. and Jakubke, H.-D. 1994. The specificity of clostripain from Clostridium histolyticum. Mapping the S′ subsites via acyl transfer to amino acids. Eur. J. Biochem. 223: 865–872.

    Article  Google Scholar 

  18. Ménard, R., Carmona, E., Plouffe, C., Brömme, D., Konishi, Y., Lefebvre, J., and Storer, A.C. 1993. The specificity of the S1′ subsite of cysteine proteases. FEBS Lett. 328: 107–110.

    Article  PubMed  Google Scholar 

  19. Taralp, A., Kaplan, H., Sytwu, I.-I., Vlattas, I., Bohacek, R., Knap, A.K., Hirama, T., Huber, and Hasnain, S. 1995. Characterization of the S3 subsite specificity of cathepsin B. J. Biol. Chem. 270: 18036–18043.

    Article  CAS  PubMed  Google Scholar 

  20. Musil, D., Zucic, D., Turk, D., Engh, R.A., Mayr, I., Huber, R., Popovic, T., Turk, V., Towatari, T., Katunuma, N., and Bode, W. 1991. The refined 2.15Å X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J. 10: 2321–2330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Matthews, D.J. and Wells, J.A. 1993. Substrate phage: selection of protease substrates by monovalent phage display. Science 260: 1113–1117.

    Article  CAS  PubMed  Google Scholar 

  22. Schellenberger, V., Turck, C.W., Hedstrom, L., and Rutter, W.J. 1993. Mapping the S′ subsites of serine proteases using acyl transfer to mixtures of peptide nucleophiles. Biochemistry 32: 4349–4353.

    Article  CAS  PubMed  Google Scholar 

  23. Panchal, R.G. and Bayley, H. 1995. Interactions between residues in staphylococcal α-hemolysin revealed by reversion mutagenesis. J. Biol. Chem. 270: 23072–23076.

    Article  CAS  PubMed  Google Scholar 

  24. Barrett, A.J. 1973. Human cathepsin B1. Purification and some properties of the enzyme. Biochem. J. 131: 809–822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Walker, B. and Bayley, H. 1995. Key residues for membrane binding, oligomerization, and pore-forming activity of staphylococcal α-hemolysin identified by cysteine scanning mutagenesis and targeted chemical modification. J. Biol. Chem. 270: 23065–23071.

    Article  CAS  PubMed  Google Scholar 

  26. Matrisian, L.M. 1992. The matrix-degrading metalloproteinases. Bioessays 14: 455–463.

    Article  CAS  PubMed  Google Scholar 

  27. Stetler-Stevenson, W.G., Liotta, L.A., and Kleiner, D.E. 1993. Role of matrix metalloproteinases in tumor invasion and metastasis. FASEB J. 7: 1434–1441.

    Article  CAS  PubMed  Google Scholar 

  28. Huennekens, F.M. 1994. Tumor targeting: activation of prodrugs by enzyme-monoclonal antibody conjugates. Trends Biotechnol. 12: 239–245.

    Article  Google Scholar 

  29. Pederzolli, C., Belmonte, G., Serra, M.D., Macek, P., and Menestrina, G. 1995. Biochemical and cytotoxic properties of conjugates of transferrin with equinatoxin II, a cytolysin from a sea anemone. Bioconjugate Chem. 6: 166–173.

    Article  CAS  Google Scholar 

  30. Yemul, S., Berger, C., Estabrook, A., Suarez, S., Edelson, R., and Bayley, H. 1987. Selective killing of T lymphocytes by phototoxic liposomes. Proc. Natl. Acad. Sci. USA 84: 246–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Walker, B.J., Krishnasastry, M., Zorn, L., Kasianowicz, J.J., and Bayley, H., 1992. Functional expression of the α-hemolysin of Staphylococcus aureus in intact Escherichia coli and in cell lysates. J. Biol. Chem. 267: 10902–10909.

    CAS  PubMed  Google Scholar 

  32. Walker, B.J., Krishnasastry, M., Zorn, L., and Bayley, H. 1992. Assembly of the oligomeric membrane pore formed by staphylococcal α-hemolysin examined by truncation mutagenesis. J. Biol. Chem. 267: 21782–21786.

    CAS  PubMed  Google Scholar 

  33. Huff, J.P., Grant, B.J., Penning, C.A., and Sullivan, K.F. 1990. Optimization of routine transformation of Escherichia coli with plasmid DNA. BioTechniques 9: 570–576.

    CAS  PubMed  Google Scholar 

  34. Chung, C.T., Niemela, S.L., and Miller, R.H. 1989. One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc. Natl. Acad. Sci. USA 86: 2172–2175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gilles, A.-M., Imhoff, J.-M., and Keil, B. 1979. α-Clostripain: chemical characterization, activity, and thiol content of the highly active form of clostripain. J. Biol. Chem. 254: 1462–1468.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panchal, R., Cusack, E., Cheley, S. et al. Tumor protease-activated, pore-forming toxins from a combinatorial library. Nat Biotechnol 14, 852–856 (1996). https://doi.org/10.1038/nbt0796-852

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0796-852

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing