Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Germline Transformation of Maize Following Manipulation of Chimeric Shoot Meristems

Abstract

Genetic transformation of maize has been limited to a small number of genotypes that form embryogenie tissue in culture. We have investigated whether cells in the developing shoot meristem of immature zygotic embryos might provide an alternative, more universal target for production of transformed maize plants. Following DNA delivery mediated by microprojectile bombardment, immature embryos developed into chimeric plants with transgenic sectors containing an antibiotic resistance marker and the ß-glucuronidase (GUS) gene at a high frequency. Because the majority of transgenic sectors were restricted in size, the probability of a transformation event contributing to the germline without further manipulation was low. To enlarge the transgenic sectors and increase the likelihood of germline transmission, the apical meristems of germinated plants were excised and cultured on cytokinin-containing medium with a selective agent. Transformed sectors were visualized by their non-bleached phenotype or by staining with a GUS histochemical stain. Hormonally-induced shoot multiplication produced plants with sectors that had a greater chance of contributing to the germline. Transmission to progeny was demonstrated both by transgene expression and by Southern analysis. This method has been used successfully with genotypes that include a sweet corn hybrid and an elite field corn inbred.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Vasil, I.K. 1994. Molecular improvement of cereals. Plant Molecular Biology 25: 925–937.

    Article  CAS  Google Scholar 

  2. Armstrong, C.L. 1994. Regeneration of plants from somatic cell cultures; applications for in vitro genetic manipulation, p. 663–677. In: The Maize Handbook. Freeling, M. and Walbot, V. (Eds.). Springer-Verlag, New York.

    Chapter  Google Scholar 

  3. Fromm, M.E., Morrish, F., Armstrong, C., Williams, R., Thomas, J. and Klein, T.M. 1990. Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology 8: 833–839.

    CAS  Google Scholar 

  4. Gordon-Kamm, W. J., Spencer, T.M., Mangano, M.L., Adams, T.R., Daines, R.J., Start, W.G., O'Brien, J.V., Chambers, S.A., Adams, W.R., Jr., Willetts, N.G., Rice, T.B., Mackey, C.J., Krueger, R.W., Kausch, A.P. and Lemaux, P.G. 1990. Transformation of maize cells and regeneration of fertile transgenic plants. The Plant Cell 2: 603–618.

    Article  CAS  Google Scholar 

  5. D'Halluin, K., Bonne, E., Bossut, M., De Beuckeleer, M. and Leemans, J. 1992. Transgenic maize plants by tissue electroporation. The Plant Cell 4: 1495–1505.

    Article  CAS  Google Scholar 

  6. Koziel, M.G., Beland, G.L., Bowman, C., Carozzi, N.B., Crenshaw, R., Crossland, L., Dawson, J., Desai, N., Hill, M., Kadwell, S., Launis, K., Lewis, K., Maddox, D., McPherson, K., Meghji, M.R., Merlin, E., Rhodes, R., Warren, G.W., Wright, M. and Evola, S.V. 1993. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technology 11: 194–200.

    CAS  Google Scholar 

  7. Wan, Y., Widholm, J.M. and Lemaux, P.G. 1993. Maize transformation and regeneration of transgenic plants by microprojectile bombardment of Type I callus. 35th Annual Maize Genetic Conference. Pheasant Run Resort, St. Charles, Illinois.

  8. Armstrong, C.L., Romero-Steverson, J. and Hodges, T.K. 1992. Improved tissue culture response of an elite maize inbred through backcross breeding, and identification of chromosomal regions important for regeneration by RFLP analysis. Theor. Appl. Genet. 84: 755–762.

    Article  CAS  Google Scholar 

  9. Cowen, N.M., Johnson, C.D., Armstrong, K., Miller, M., Woosley, A., Pescitelli, S., Skokut, M., Belmar, S. and Petolino, J.F. 1992. Mapping genes conditioning in vitro androgenesis in maize using RFLP analysis. Theor Appl Genet 84: 720–724.

    Article  CAS  Google Scholar 

  10. Wan, Y., Rocheford, T.R. and Widholm, J.M. 1992. RFLP analysis to identify putative chromosomal regions involved in the anther culture response and callus formation of maize. Theor. Appl. Genet 85: 360–365.

    Article  CAS  Google Scholar 

  11. Duvick, D.N. 1992. Genetic contributions to advances in yield of U.S. maize. Maydica 37: 69–79.

    Google Scholar 

  12. Armstrong, C.L., Green, C.E. and Phillips, R.L. 1991. Development and availability of germplasm with high Type II culture formation response. Maize Genetics Cooperation Newsletter 65: 92–93.

    Google Scholar 

  13. Zhong, H., Srinivasan, C. and Sticklen, M.B. 1992. In-vitro morphogenesis of corn (Zea mays L.) I. Differentiation of multiple shoot clumps and somatic embryos from shoot tips. Planta 187: 483–489.

    Article  CAS  Google Scholar 

  14. Bowen, B., Ludwig, S., Beach, L. and Wessler, S. 1989. R genes as visual markers for corn transformation, p. 81. In: Molecular Communication in Higher Plants; Proceedings of the Fifteenth EMBO Symposium.

    Google Scholar 

  15. Bowen, B. 1992. Anthocyanin genes as visual markers in transformed maize tissues, p. 163–176. In: GUS Protocols: Using the GUS Gene as a Reporter of Gene Expression. Gallagher, S. R. (Ed.). Academic Press, NY.

    Chapter  Google Scholar 

  16. Bowen, B. 1993. Markers for plant gene transfer, p. 89–123. In: Transgenic Plants. Kung, S. and Wu, R. (Eds.). Academic Press, NY.

    Chapter  Google Scholar 

  17. Tomes, D. 1990. Transformation in corn: non-sexual gene transfer, p. 1–13. In: Twenty-Sixth Annual Illinois Corn Breeders School Symposium at the University of Illinois at Urbana-Champaign.

    Google Scholar 

  18. Cao, J., Wang, Y., Klein, T.M., Sanford, J. and Wu, R. 1990. Transformation of rice and maize using the Holistic process, p. 21–33. In: Plant Gene Transfer. Lamb, C. J. and Beachy, R. N. (Eds.). Wiley-Liss, NY.

    Google Scholar 

  19. Gambley, R.L., Ford, R. and Smith, G.R. 1993. Microprojectile transformation of sugarcane meristems and regeneration of shoots expressing ß-Glucuronidase. Plant Cell Reports 12: 343–346.

    Article  CAS  Google Scholar 

  20. Bilang, R., Zhang, S., Leduc, N., Iglesias, V.A., Gisel, A., Simmonds, J., Potrykus, I. and Sautter, C. 1993. Transient gene expression in vegetative shoot apical meristems of wheat after ballistic microtargeting. The Plant Journal 4: 735–744.

    Article  CAS  Google Scholar 

  21. Iglesias, V.A., Gisel, A., Bilang, R., Leduc, N., Potrykus, I. and Sautter, C. 1994. Transient expression of visible marker genes in meristem cells of wheat embryos after ballistic micro-targeting. Planta 192: 84–91.

    CAS  Google Scholar 

  22. Lusardi, M.C., Neuhaus-Url, G., Potrykus, I. and Neuhaus, G. 1994. An approach towards genetically engineered cell fate mapping in maize using the Lc gene as a visible marker transactivation capacity of Lc vectors in differentiated maize cells and microinjection of Lc vectors into somatic embryos and shoot apical meristems. The Plant Journal 5: 571–582.

    Article  CAS  Google Scholar 

  23. Steffensen, D.M. 1968. A reconstruction of cell development in the shoot apex of maize. Amer. J. Bot. 55: 354–369.

    Article  Google Scholar 

  24. Johri, M.M. and Coe, E.H. 1982. Genetic approaches to meristem organization, p. 301–310. In: Maize for Biological Research. Sheridan, W. F. (Ed.). University of North Dakota Press, ND.

    Google Scholar 

  25. Poethig, R.S., Coe, E.H. Jr. and Johri, M.M. 1986. Cell lineage patterns in maize embryogenesis: a clonal analysis. Developmental Biology 117: 392–404.

    Article  Google Scholar 

  26. McDaniel, C.N. and Poethig, R.S. 1988. Cell-lineage patterns in the shoot apical meristem of the germinating maize embryo. Planta 175: 1322.

    Article  Google Scholar 

  27. Bossinger, G., Maddaloni, M., Motto, M. and Salamini, F. 1992. Formation and cell lineage patterns of the shoot apex of maize. The Plant Journal 2: 311–320.

    Article  Google Scholar 

  28. Tilney-Bassett Richard, A.E. 1986. Plant Chimeras. Edward Arnold, London.

  29. Chyi, Y. and Phillips, G.C. 1987. High efficiency Agrobacterium-mediated transformation of Lycopersicon based on conditions favorable for regeneration. Plant Cell Reports 6: 105–108.

    CAS  PubMed  Google Scholar 

  30. McCabe, D.E., Swain, W.F., Martinell, B.J. and Christou, P. 1988. Stable transformation of soybean (Glycine max) by particle acceleration. Bio/Technology 6: 923–926.

    Google Scholar 

  31. McCabe, D.E. and Martinell, B.J. 1993. Transformation of elite cotton culti-vars via particle bombardment of meristems. Bio/Technology 11: 596–598.

    Google Scholar 

  32. Hajela, R.K., Hajela, N., Bolyard, M.G., Barnes, W.M. and Sticklen, M.B. 1993. A simple transformation system using adventitious shoot multiplication of Juneberry. HortScience 28: 330–332.

    CAS  Google Scholar 

  33. Dun-Yi, Y. and Krikorian, A.D. 1981. Multiplication of rice (Oryza saliva L.) from aseptically cultured nodes. Ann. Bot. 48: 255–259.

    Article  Google Scholar 

  34. Dalton, S.J. and Dale, P.J. 1985. The application of in vitro tiller induction in Lolium multiflorum. Euphytica 34: 897–904.

    Article  Google Scholar 

  35. Lee, T.S.G. 1987. Micropropagation of sugarcane (Saccharum spp.). Plant Cell Tissue and Organ Culture 10: 47–55.

    Article  Google Scholar 

  36. Bhaskaran, S. and Smith, R.H. 1990. Regeneration in cereal tissue culture: A review. Crop Sci. 30: 1328–1336.

    Article  CAS  Google Scholar 

  37. Finch, R.P., Baset, A., Slamet, I.H. and Cocking, E.C. 1992. In vitro shoot culture of wild Oryzae and other grass species. Plant Cell, Tissue and Organ Culture 30: 31–39.

    Article  CAS  Google Scholar 

  38. Raman, K., Walden, D.B. and Greyson, R.I. 1980. Propagation of Zea mays L. by shoot tip culture: a feasibility study. Ann. Bot. 45: 183–189.

    Article  Google Scholar 

  39. Walden, D.B., Greyson, R.I., Bommineni, V.R., Pareddy, D.R., Sanchez, J.P., Banasikowska, E. and Kudirka, D.T. 1989. Maize meristem culture and recovery of mature plants. Maydica 34: 263–275.

    Google Scholar 

  40. Santos, M.A., Torne, J.M. and Blanco, J.L. 1984. Methods of obtaining maize totipotent tissues. I. Seedling segments culture. Plant Science Letters 33: 309–315.

    Article  Google Scholar 

  41. Lowe, K., Taylor, T.B., Ryan, P. and Paterson, K.E. 1985. Plant regeneration via organogenesis and embryogenesis in the maize inbred line B73. Plant Science 41: 125–132.

    Article  Google Scholar 

  42. Jones, J.D.G., Svab, Z., Harper, E.C., Hurwitz, C.D. and Maliga, P. 1987. A dominant nuclear streptomycin resistance marker for plant cell transformation. Mol. Gen. Genet. 210: 86–91.

    Article  CAS  Google Scholar 

  43. Svab, Z., Harper, E.C., Jones, J.D.G. and Maliga, P. 1990. Aminoglycoside-3′-adenyltransferase confers resistance to spectinomycin and streptomycin in Nicotiana tabacum. Plant Molecular Biology 14: 197–205.

    Article  CAS  Google Scholar 

  44. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. and Prasher, D.C. 1994. Green fluorescent protein as a marker for gene expression. Science 263: 802–805.

    Article  CAS  Google Scholar 

  45. Ludwig, S., Bowen, B., Beach, L. and Wessler, S. 1990. A regulatory gene as a novel visible marker for maize transformation. Science 247: 449–450.

    Article  CAS  Google Scholar 

  46. Goff, S.A., Klein, T.M., Roth, B.A., Fromm, M.E., Cone, K.C., Pablo Radicella, J. and Chandler, V.L. 1990. Transactivation of anthocyanin bio-synthetic genes following transfer of B regulatory genes into maize tissues. EMBO J. 9: 2517–2522.

    Article  CAS  Google Scholar 

  47. Register, J.C. III, Peterson, D.J., Bell, P.J., Bullock, W.P., Evans, I.J., Frame, B., Greeland, A.J., Higgs, N.S., Jepson, I., Jiao, S., Lewnau, C.J., Sillic, J.M. and Wilson, H.M. 1994. Structure and function of selectable and non-selectable transgenes in maize after introduction by particle bombardment. Plant Mol Biol 25: 951–961.

    Article  CAS  Google Scholar 

  48. Paszkowski, J. (Ed.). 1994. Homologous Recombination and Gene Silencing in Plants. Kluwer Academic Publishers, Boston, MA.

    Google Scholar 

  49. McElroy, D. and Brettell, R.I.S. 1994. Foreign gene expression in transgenic cereals. Trends in Biotechnology 12: 62–68.

    Article  CAS  Google Scholar 

  50. Simpson, J., Van Montagu, M. and Herrera-Estrella, L. 1986. Photosynthesis-associated gene families: Differences in response to tissue-specific and environmental factors. Science 233: 34–48.

    Article  CAS  Google Scholar 

  51. Ritala, A., Aspegren, K., Kurten, U., Salmenkallio-Marttila, M., Monnonen, L., Hannus, R., Kauppinen, V., Teeri, T.H. and Enari, T. 1994. Fertile transgenic barley by particle bombardment of immature embryos. Plant Mol Biol 24: 317–325.

    Article  CAS  Google Scholar 

  52. Songstad, D.D., Somers, D.A. and Griesbach, R.J. 1995. Advances in alternative DNA delivery techniques. Plant Cell Tissue and Organ Culture 40: 1 15.

    Article  CAS  Google Scholar 

  53. Abbe, E.C. and Stein, O.L. 1954. The growth of the shoot apex in maize: embryogeny. American Journal of Botany 41: 285–293.

    Article  Google Scholar 

  54. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497.

    Article  CAS  Google Scholar 

  55. Jefferson, R.A., Burgess, S.M. and Hirsh, D. 1986. ß-Glucuronidase from Escherichia coli as a gene fusion marker. Proc. Natl. Acad. Sci. USA 83: 8447–8451.

    Article  CAS  Google Scholar 

  56. Beck, E., Ludwig, G., Auerswald, E.A., Reiss, B. and Schaller, H. 1982. Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5. Gene 19: 327–336.

    Article  CAS  Google Scholar 

  57. Gardner, R.C., Howarth, A.J., Hahn, P., Brow-Luedi, M., Shepherd, R.J. and Messing, J.C. 1981. The complete nucleotide sequence of an infectious clone of cauliflower mosaic virus by M13mp7 shotgun sequencing. Nucl. Acids Res. 9: 2871–2888.

    Article  CAS  Google Scholar 

  58. Gallie, D.R., Sleat, D.E., Watts, J.W., Turner, P.C. and Wilson, T.M.A. 1987. The 5′-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo. Nucl. Acids Res. 15: 2871–2888.

    Article  Google Scholar 

  59. Dennis, E., Gerlach, W., Pryor, A., Bennetzen, J., Inglis, A., Llewellyn, D., Sachs, M., Feri, R. and Peacock, W. 1984. Molecular characterization of the maize Adhl gene. Nucl. Acids Res. 12: 3983–3990.

    Article  CAS  Google Scholar 

  60. An, G., Mitra, A., Choi, H.K., Costa, M.A., An, K., Thornburg, R.W. and Ryan, C.A. 1989. Functional analysis of the 3′ control region of the potato wound-inducible proteinase inhibitor II gene. Plant Cell 1: 115–122.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Christensen, A.H., Sharrock, R.A. and Quail, P.H. 1992. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol. Biol. 18: 675–689.

    Article  CAS  Google Scholar 

  62. Sullivan, T.D., Christensen, A.H. and Quail, P.H. 1989. Isolation and characterisation of a maize chlorophyll a/b binding protein gene that produces high levels of mRNA in the dark. Mol. Gen. Genetic. 215: 431–440.

    Article  CAS  Google Scholar 

  63. Jones, J.D.G., Shlumukov, K., Carland, F., English, J., Scofield, S.R., Bishop, G.J. and Harrison, K. 1992. Effective vectors for transformation, expression of heterologous genes, and assaying transposon excision in transgenic plants. Transgenic Research 1: 285–297.

    Article  CAS  Google Scholar 

  64. Jefferson, R. 1987. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5: 387–405.

    Article  CAS  Google Scholar 

  65. Rogers, S.O. and Bendich, A.J. 1985. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol. Biol. 5: 69–73.

    Article  CAS  Google Scholar 

  66. Rao, G. and Flynn, P. 1990. A quantitative assay for ß-D-glucuronidase (GUS) using microtiter plates. BioTechniques 8: 38–40.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith Lowe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lowe, K., Bowen, B., Hoerster, G. et al. Germline Transformation of Maize Following Manipulation of Chimeric Shoot Meristems. Nat Biotechnol 13, 677–682 (1995). https://doi.org/10.1038/nbt0795-677

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0795-677

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing