Biological Production of Semisynthetic Opiates Using Genetically Engineered Bacteria

Abstract

Semisynthetic derivatives of morphine and related alkaloids are in widespread clinical use. Due to the complexity of these molecules, however, chemical transformations are difficult to achieve in high yields. We recently identified the powerful analgesic hydromorphone as an intermediate in the metabolism of morphine by Pseudomonas putida M10. Here we describe the construction of recombinant strains of Escherichia coli that express morphine dehydrogenase and morphinone reductase. These strains are capable of efficiently transforming the naturally occurring alkaloids morphine and codeine to hydromorphone and the antitussive hydrocodone, respectively. Our results demonstrate the potential for recombinant DNA technology to provide biological routes for the synthesis of known and novel semi-synthetic opiate drugs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Cameron, G.W.W., Jordan, K.N., Holt, P.-J., Baker, P.B., Lowe, C.R. and Bruce, N.C. 1994. Identification of a heroin esterase in Rhodococcus sp. strain HI. Appl. Environ. Microbiol. 60: 3881–3883.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Holt, P.-J., Gray Stephens, L.D., Brace, N.C. and Lowe, C.R. 1995. An amperometric opiate assay. Biosensors and Bioelectronics. In press.

  3. 3

    Brace, N.C., Wilmot, C.J., Jordan, K.N., Trebilcock, A.E., Gray Stephens, L.D. and Lowe, C.R. 1990. Microbial degradation of the morphine alkaloids: identification of morphinone as an intermediate in the metabolism of morphine by Pseudomonas putida M10. Arch. Microbiol. 154: 465–470.

    Article  Google Scholar 

  4. 4

    Hailes, A.M. and Bruce, N.C. 1993. Biological synthesis of the analgesic hydromorphone, an intermediate in the metabolism of morphine, by Pseudomonas putida M10. Appl. Environ. Microbiol. 59: 2166–2170.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Brace, N.C., Wilmot, C.J., Jordan, K.N., Gray Stephens, L.D. and Lowe, C.R. 1991. Microbial degradation of the morphine alkaloids: purification and characterisation of morphine dehydrogenase from Pseudomonas putida M10. Biochem. J. 274: 875–880.

    Article  Google Scholar 

  6. 6

    Willey, D.L., Caswell, D.A., Lowe, C.R. and Brace, N.C. 1993. Nucleotide sequence and over-expression of morphine dehydrogenase, a plasmid encoded gene from Pseudomonas putida M10. Biochem. J. 290: 539–544.

    CAS  Article  Google Scholar 

  7. 7

    Brace, N.C., Willey, D.L., Coulson, A.F.W. and Jeffery, J. 1994. Bacterial morphine dehydrogenase further defines a distinct superfamily of oxidoreductases with diverse functional activities. Biochem. J. 299: 805–811.

    Article  Google Scholar 

  8. 8

    French, C.E. and Bruce, N.C. 1994. Purification and characterisation of morphinone reductase from Pseudomonas putida M10. Biochem. J. 301: 97–103.

    CAS  Article  Google Scholar 

  9. 9

    French, C.E. and Bruce, N.C. Bacterial morphinone reductase is related to Old Yellow Enzyme and related eukaryotic proteins. In preparation.

  10. 10

    Scrutton, N.S. 1994. α/β Barrel evolution and the modular assembly of enzymes: emerging trends in the flavin oxidase/dehydrogenase family. BioEssays 16: 115–122.

    CAS  Article  Google Scholar 

  11. 11

    Long, M.T., Hailes, A.M., Kirby, G.W. and Bruce, N.C. 1995. Transformations of the morphine alkaloids by Pseudomonas putida M10. Submitted.

  12. 12

    Poustka, A., Rackwitz, H.-R., Frischauf, A.M., Hohn, B. and Lehrach, H. 1984. Selective isolation of cosmid clones by homologous recombination in Escherichia coli. Proc. Natl. Acad. Sci. USA 81: 4129–4133.

    CAS  Article  Google Scholar 

  13. 13

    Rapoport, H., Baker, D.R. and Reist, H.N. 1957. Morphinone. J. Org. Chem. 15: 1489–1492.

    Article  Google Scholar 

  14. 14

    Jackson, J.B. 1991. The proton-translocating nicotinamide adenine dinucleotide transhydrogenase. J. Bioenergetics Biomembmnes 23: 715–741.

    CAS  Article  Google Scholar 

  15. 15

    Perham, R.N., Scrutton, N.S. and Berry, A. 1991. New enzymes for old: redesigning the coenzyme and substrate specificities of glutathione reductase. BioEssays 13: 515–525.

    CAS  Article  Google Scholar 

  16. 16

    Scrutton, N.S., Berry, A. and Perham, R.N. 1990. Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature 343: 38–43.

    CAS  Article  Google Scholar 

  17. 17

    Nishiyama, M., Birktoft, J.J. and Beppu, T. 1993. Alteration of coenzyme specificity of malate dehydrogenase from Thermus ftavus by site-directed mutagenesis. J. Biol. Chem. 268: 4656–4660.

    CAS  PubMed  Google Scholar 

  18. 18

    Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids J. Mol. Biol. 166: 557–580.

    CAS  Article  Google Scholar 

  19. 19

    Bertani, G. 1951. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 62: 293–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

French, C., Hailes, A., Rathbone, D. et al. Biological Production of Semisynthetic Opiates Using Genetically Engineered Bacteria. Nat Biotechnol 13, 674–676 (1995). https://doi.org/10.1038/nbt0795-674

Download citation

Further reading