Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Efficient Expression of Drug-selectable Genes in Retroviral Vectors Under Control of an Internal Ribosome Entry Site

Abstract

We describe a new retroviral vector system pSXLC/pHa that utilizes a putative internal ribosome entry site (IRES) from encephalomyocarditis virus downstream from a multicloning site to co-express drug-selectable markers with a second non-selectable cDNA in a eukaryotic expression vector. The positive drug-selectable marker, MDR1, and the positive-negative marker, herpes simplex virus thymidine kinase (HSV-TK), were successfully introduced and expressed in the pSXLC/pHa system. The pSXLC-MDR and pSXLC-TK vectors contain the drug-selectable genes under translational control of the IRES and multiple cloning sites upstream for insertion of second cDNAs which can be co-expressed in this system. The inserts of these pSXLC plasmids were designed for easy transfer to the pHa retrovirus vector which has a strong promoter from Harvey murine sarcoma virus. The IRES-MDR-carrying retroviral vector, pHa-MCS-IRES-MDR, conferred resistance to vincristine and adriamycin. The IRES-TK-containing vector, pHa-MCS-IRES-TK conferred HAT-resistance in TK-deficient cells and the transfectants showed hyper-sensitivity to ganciclovir. These “flexible” vectors should be useful for co-expression of genes for selectable gene transfer and for positive-negative (suicide) selections in vitro and in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Miller, A.D. 1992. Human gene therapy comes of age. Science 357: 455–460.

    CAS  Google Scholar 

  2. Mulligan, R.C. 1993. The basic science of gene therapy. Science 260: 926–932.

    Article  CAS  Google Scholar 

  3. Olsen, J.C., Johnson, L.G., Wong-Sun, M.L., Moore, K.L., Swanstrom, R. and Boucher, R.C. 1993. Retrovirus-mediated gene transfer to cystic fibrosis airway epithelial cells: effect of selectable marker sequences on long-term expression. Nucl. Acids Res. 21: 663–669.

    Article  CAS  Google Scholar 

  4. Gottesman, M.M. and Fasten, I. 1993. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu. Rev. Biochem. 62: 385–427.

    Article  CAS  Google Scholar 

  5. Chen, C.J., Chin, J.E., Ueda, K., Clark, D.P., Pastan, I., Gottesman, M.M. and Roninson, I.B. 1986. Internal duplication and homology with bacterial transport proteins in the mdrI (P-glycoprotein) gene from multidrug-resistant human cells. Cell 47: 381–389.

    Article  CAS  Google Scholar 

  6. Kartner, N., Riordan, J.R. and Ling, V. 1983. Cell surface P-glycoprotein associated with multidrug resistance in mammalian cell lines. Science 221: 1285–1288.

    Article  CAS  Google Scholar 

  7. Pastan, I., Gottesman, M.M., Ueda, K., Lovelace, E., Rutherford, A. and Willingham, M.C. 1988. A retrovirus carrying a MDRI cDNA confers multi-drug resistance and polarized expression of P-glycoprotein in MDCK cells. Proc. Natl. Acad. Sci. USA 85: 4486–4490.

    Article  CAS  Google Scholar 

  8. Podda, S., Ward, M., Himelstein, A., Richardson, C., Flor-Weiss, E., Smith, L., Gottesman, M.M., Fasten, I. and Bank, A. 1992. Transfer and expression of the human multiple drug resistance gene into live mice. Proc. Natl. Acad. Sci. USA 89: 9676–9680.

    Article  CAS  Google Scholar 

  9. Sorrentino, B.P., Brandt, S.J., Bodine, D., Gottesman, M.M., Pastan, I., Cline, A. and Nienhuis, A.W. 1992. Retroviral transfer of the human MDRI gene permits selection of drug resistant bone marrow cells in vivo. Science 257: 99–103.

    Article  CAS  Google Scholar 

  10. Galski, H., Sullivan, M., Willingham, M.C., Chin, K.V., Gottesman, M.M., Pastan, I. and Merlino, G.T. 1989. Expression of a human multidrug resistance cDNA (MDRI) in the bone marrow of transgenic mice: Resistance to daunomycin-induced leukopenia. Mol. Cell. Biol. 9: 4357–4363.

    Article  CAS  Google Scholar 

  11. Mickisch, G., Licht, T., Merlino, G.T., Gottesman, M.M. and Pastan, I. 1991. Chemotherapy and chemosensitization of transgenic mice which express the human multidrug resistance gene in bone marrow: efficacy, potency, and toxicity. Cancer Res. 51: 5417–5424.

    CAS  PubMed  Google Scholar 

  12. Mickisch, G., Merlino, G.T., Galski, H., Gottesman, M.M. and Pastan, I. 1991. Transgenic mice which express the human multidrug resistance gene in bone marrow enable a rapid identification of agents which reverse drug resistance. Proc. Natl. Acad. Sci. USA. 88: 547–551.

    Article  CAS  Google Scholar 

  13. Culver, K.W., Ram, Z., Wallbridge, S., Ishii, H., Oldfield, E.H. and Blaese, R.M. 1992. In vivo gene transfer with retroviral vector producer cells for treatment of experimental brain tumors. Science 256: 1550–1552.

    Article  CAS  Google Scholar 

  14. Ram, Z., Culver, K.W., Walbridge, S., Blaese, R.M. and Oldfield, E. H. 1993. In situ retroviral-mediated gene transfer for the treatment of brain tumors in rats. Cancer Res. 53: 83–88.

    CAS  Google Scholar 

  15. Emerman, M. and Temin, H.H. 1984. Genes with promoters in retrovirus vectors can be independently suppressed by an epigenetic mechanism. Cell 39: 459–467.

    Article  CAS  Google Scholar 

  16. Germann, U.A., Gottesman, M.M. and Pastan, I. 1989. Expression of a multidrug resistance-adenosine deaminase fusion gene. J. Biol. Chem. 264: 7418–7424.

    CAS  PubMed  Google Scholar 

  17. Germann, U.A., Chin, K.V., Pastan, I. and Gottesman, M.M. 1990. Retroviral transfer of a chimeric multidrug resistance-adenosine deaminase gene. FASEB J. 4: 1501–1507.

    Article  CAS  Google Scholar 

  18. Kaufman, R.J., Davies, M.V., Wasley, L.C. and Michnick, D. 1991. Improved vectors for stable expression of foreign genes in mammalian cells by use of the untranslated leader sequence from EMC virus. Nucl. Acids Res. 19: 4485–4490.

    Article  CAS  Google Scholar 

  19. Morgan, R.A., Couture, L., Elroy-Stein, O., Ragheb, J., Moss, B. and Anderson, W.F. 1992. Retroviral vectors containing putative internal ribosome entry sites: development of a polycistronic gene transfer system and applications to human gene therapy. Nucl. Acids Res. 20: 1293–1299.

    Article  CAS  Google Scholar 

  20. Dirks, W., Wirth, M. and Mauser, H. 1993. Dicistronic transcription units for gene expression in mammalian cells. Gene 129: 247–249.

    Article  Google Scholar 

  21. McLachlin, J.R., Eglitis, M.A., Ueda, K., Kantoff, P.W., Pastan, I.H., Anderson, W.F. and Gottesman, M.M. 1990. Expression of a human complementary DNA for the multidrug resistance gene in murine hematopoietic precursor cells with the use of retroviral gene transfer. J. Natl. Cancer Inst. 82: 1260–1263.

    Article  CAS  Google Scholar 

  22. Jang, S.K., Krausslich, H.G., Nicklin, M.J.H., Duke, G.M., Palmerberg, A.C. and Wimmer, E. 1988. A segment of the 5′ nontranslated region of encepha-lomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J. Virol. 62: 2636–2643.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Aran, J.M., Gottesman, M.M. and Fasten, I. 1994. Drug-selected coexpression of human glucocerebrosidase and P-glycoprotein using a bicistronic vector. Proc. Natl. Acad. Sci. USA 91: 3176–3180.

    Article  CAS  Google Scholar 

  24. Danos, O. and Mulligan, R.C. 1988. Safe and efficient generation of recombi-nant retrovirus with amphotropic and ecotropic host ranges. Proc. Natl. Acad. Sci. USA 85: 6460–6464.

    Article  CAS  Google Scholar 

  25. Sugimoto, Y. and Tsuruo, T. 1987. DNA-mediated transfer and cloning of human multidrug-resistant gene of Adriamycin-resistant myelogenous leukemia K562. Cancer Res. 47: 2620–2625.

    CAS  PubMed  Google Scholar 

  26. Kioka, N., Tsubota, J., Kakehi, Y., Komano, T., Gottesman, M.M., Pastan, I. and Ueda, K. 1989. P-glycoprotein gene (MDR1) cDNA from human adrenal: normal P-glycoprotein carries Gly185 with an altered pattern of multidrug resistance. Biochem. Biophys. Res. Commun. 162: 224–231.

    Article  CAS  Google Scholar 

  27. Chen, C. and Okayama, H. 1987. High Efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7: 2745–2752.

    Article  CAS  Google Scholar 

  28. Hamada, H. and Tsuruo, T. 1986. Functional role for the 170-to 180-kDa glycoprotein specific to drug-resistant tumor cells as revealed by monoclonal antibodies. Proc. Natl. Acad. Sci. USA 83: 7785–7789.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ira Pastan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugimoto, Y., Aksentijevich, I., Gottesman, M. et al. Efficient Expression of Drug-selectable Genes in Retroviral Vectors Under Control of an Internal Ribosome Entry Site. Nat Biotechnol 12, 694–698 (1994). https://doi.org/10.1038/nbt0794-694

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0794-694

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing