Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Biodegradable Polymer Scaffolds for Tissue Engineering

Abstract

Synthetic polymer scaffolds designed for cell transplantation were reproducibly made on a large scale and studied with respect to biocompatibility, structure and biodegradation rate. Polyglycolic acid (PGA) was extruded and oriented to form 13 μm diameter fibers with desired tenacity. Textile processing techniques were used to produce fibrous scaffolds with a porosity of 97% and sufficient structural integrity to maintain their dimensions when seeded with isolated cartilage cells (chondrocytes) and cultured in vitro at 37°C for 8 weeks. Cartilaginous tissue consisting of glycosaminoglycan and collagen was regenerated in the shape of the original PGA scaffold. The resulting cell-polymer constructs were the largest grown in vitro to date (1 cm diameter × 0.35 cm thick). Construct mass was accurately predicted by accounting for accumulation of tissue components and scaffold degradation. The scaffold induced chondrocyte differentiation with respect to morphology and phenotype and represents a model cell culture substrate that may be useful for a variety of tissue engineering applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Langer, R. and Vacanti, J.P. 1993. Tissue Engineering. Science 260: 920–926.

    Article  CAS  Google Scholar 

  2. Lanzetta, M. and Ower, E. 1992. Achieving better patency rates and neoendothelialization in 1-millimeter polytetrafluoroethylene grafts by varying fibril length and wall thickness. Microsurg. 13: 76–83.

    Article  CAS  Google Scholar 

  3. Golden, M.A., Hanson, S.R., Kirkman, T.R., Schneider, P.A. and Clowes, A.W. 1990. Healing of polytetrafluoroethylene arterial grafts is influenced by graft porosity. J Vasc. Surg. 11: 838–845.

    Article  CAS  Google Scholar 

  4. Freed, L.E., Marquis, J.C., Nohria, A., Emmanual, J., Mikos, A.G. and Langer, R. 1993. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J. Biomed. Mater. Res. 27: 11–23.

    Article  CAS  Google Scholar 

  5. Freed, L.E., Marquis, J.C., Vunjak-Novakovic, G., Emmanual, J. and Langer, R. 1994. Composition of cell-polymer cartilage implants. Biotech & Bioeng. 43: 605–614.

    Article  CAS  Google Scholar 

  6. Freed, L.E., Grande, D.A., Emmanual, J., Marquis, J.C., Lingbin, Z. and Langer, R. 1994. Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer scaffolds. J. Biomed. Mater. Res. Vol. 28 (In press).

    Article  CAS  Google Scholar 

  7. Vacanti, C., Langer, R., Schloo, B. and Vacanti, J.P. 1991. Synthetic biodegradable polymers seeded with chondrocytes provide a template for new cartilage formation in vivo. Plastic and Reconstr. Surg. 88: 753–759.

    Article  CAS  Google Scholar 

  8. Cima, L.G., Vacanti, J.P., Vacanti, C., Ingber, D., Mooney, D. and Langer, R. 1991. Tissue engineering by cell transplantation using degradable polymer substrates. J. Biomechanical Engineering 113: 143–151.

    Article  CAS  Google Scholar 

  9. Uyama, S., Takeda, T. and Vacanti, J.P. 1993. Delivery of a whole liver equivalent hepatic mass using polymer devices and hepatotrophic stimulation. Transplantation 55: 932–935.

    Article  CAS  Google Scholar 

  10. Mooney, D.J., Organ, G., Vacanti, J.P. and Langer, R. 1994. Design and fabrication of biodegradable polymer devices to engineer tubular tissues. Cell Transplantation. 3: 203–210.

    Article  CAS  Google Scholar 

  11. Gristina, A.G. 1987. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 237: 1588–1595.

    Article  CAS  Google Scholar 

  12. Frazza, E.J. and Schmitt, E.E. 1971. A mew absorbable suture. J. Biomed. Mater. Res. Symp. 1: 43–58.

    Article  Google Scholar 

  13. Freed, L.E., Vunjak-Novakovic, G. and Langer, R. 1993. Cultivation of cell-polymer cartilage implants in bioreactors. J. Cell. Biochem. 51: 257–264.

    Article  CAS  Google Scholar 

  14. Freed, L.E., Vunjak-Novakovic, G., Marquis, J.C. and Langer, R. 1994. Kinetics of chondrocyte growth in Cell-polymer implants. Biotech & Bioeng. 43: 597–604.

    Article  CAS  Google Scholar 

  15. Gilding, D.K. and Reed, A.M. 1979. Biodegradable polymers for use in surgery polyglycolic/polylactic acid homo-and copolymers. Polymer 20: 1459–1464.

    Article  CAS  Google Scholar 

  16. Cohn, D., Younes, H. and Marom, G. 1987. Amorphous and crystalline morphologies in glycolic acid and lactic acid polymers. Polymer 28: 2018–2022.

    Article  CAS  Google Scholar 

  17. Pellegrini, V.D. 1991. Osteoarthritis of the thumb trapeziometacarpal joint: A study of the pathophysiology of articular cartilage degeneration. I. Anatomy and pathology of the aging joint, and II. Articular wear patterns in the osteoarthritic joint. J. Hand Surg. 16A: 967–982.

    Article  Google Scholar 

  18. Craig, P.H., Williams, J.A., Davis, K.W., Magoun, A.D., Levy, A.J., Bogdansky, S. and Jones, J.P. 1975. A biologic comparison of polyglactin 910 and polyglycolic acid synthetic absorbable sutures. Surg. Gyn. & Obstet. 141 1–10.

    CAS  Google Scholar 

  19. Benicewicz, B.C. and Hopper, P.K. 1990. Polymers for absorbable surgical sutures, J. Bioactive and Compatible Polymers 5: 453–472.

    Article  CAS  Google Scholar 

  20. Freshney, R.I. 1987. Culture of Animal cells, 2nd Ed., p. 232. Wiley-Liss, New York.

    Google Scholar 

  21. Kronenthal, R.L. 1975. Biodegradable polymers in medicine and surgery, p. 118–137. In: Polymers in Medicine and Surgery, Plenum Press, NY.

    Chapter  Google Scholar 

  22. Chu, C.C. 1981. The in vitro degradation of polyglycolic acid sutures-effect of pH. J. Biomed. Mater. Res. 15: 795–804.

    Article  CAS  Google Scholar 

  23. Zhang, X., Goosen, M.F.A., Wyss, U.P. and Pichora, D. 1993. Biodegradable polymers for orthopedic applications. J. Macromol. Sci. Rev. Macromol. Chem. Phys. C33: 81–102.

    Article  Google Scholar 

  24. Singhal, J.P., Singh, H. and Ray, A.R. 1988. Absorbable suture materials, preparation and properties J. Macromol. Sci. Rev. Macromol. Chem. Phys. C28: 475–502.

    Article  CAS  Google Scholar 

  25. Williams, D.F. and Mort, E. 1977. Enzyme accelerated hydrolysis of PGA. J. Bioengineering 1: 231–238.

    CAS  Google Scholar 

  26. Williams, D.F. 1980. Effect of bacteria on absorbable sutures. J. Biomed. Mater. Res. 14: 329–338.

    Article  CAS  Google Scholar 

  27. Freed, L.E. and Vunjak-Novakovic, G. 1994. Hydrodynamic forces determine in vitro chondrogenesis in a three-dimensional cell-polymer model system. Biotech. & Bioeng. Submitted.

  28. Ingber, D.E., Dike, L., Hansen, L., Karp, S., Liley, H., Maniotis, A., McNamee, H., Mooney, D., Plopper, G., Sims, H. and Wang, N. 1994. Cellular tensegrity: exploring how mechanical changes in the cytoskeleton regulate cell growth, migration, and tissue pattern during morphogenesis. Int. Rev. Cyt. 150: 173–224.

    Article  CAS  Google Scholar 

  29. Daniels, K. and Solursh, M. 1991. Modulation of chondrogenesis by the cytoskeleton and extracellular matrix. J. Cell Sci. 100: 249–254.

    PubMed  Google Scholar 

  30. Benya, P.D. and Brown, P.D. 1986. Modulation of chondrocyte phenotype in vitro, p. 219–233. In: Articular Cartilage Biochemistry. K. E. Kuettner, R. Schleyerbach, and V. C. Hascall (Eds.). Raven Press, New York.

    Google Scholar 

  31. Glowacki, J., Trepman and E., Folkman, J. 1983. Cell shape and phenotypic expression in chondrocytes. Proc. Soc. Exp. Biol. Med. 172: 93–98.

    Article  CAS  Google Scholar 

  32. Wang, N., Butler, J.P. and Ingber, D.E., 1993. Mechanotransduction across the Cell surface and through the cytoskeleton Science 260: 1124–1127.

    Article  CAS  Google Scholar 

  33. Thompson, D.W. 1977. On Growth and Form, Ch. 8, p. 221–267. Cambridge University Press, New York.

  34. Folkman, J. and Mascona, A. 1978. Role of Cell shape in growth control. Nature 273: 345–349.

    Article  CAS  Google Scholar 

  35. Watt, F. 1986. The extracellular matrix and cell shape. Trends in Biochem. Sci. 11: 482–485.

    Article  CAS  Google Scholar 

  36. Kim, Y.J., San, R.L., Doong, J.Y.H. and Grodzinsky, A.J. 1988. Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal. Biochem. 174: 168–176.

    Article  CAS  Google Scholar 

  37. Farndale, R.W., Buttle, D.J. and Barrett, A.J. 1986. Improved quantitation and discrimination of sulphated glycosaminoglycans by the use of dimethylmethylene blue. Biochim. Biopyhs. Acta. 883: 173–177.

    Article  CAS  Google Scholar 

  38. Woessner, J.F. 1961. The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Archiv. Biochem, & Biophys. 93: 440–447.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freed, L., Vunjak-Novakovic, G., Biron, R. et al. Biodegradable Polymer Scaffolds for Tissue Engineering. Nat Biotechnol 12, 689–693 (1994). https://doi.org/10.1038/nbt0794-689

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0794-689

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing