Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Sequence–Specific Cleave of Protein Fusion Using a Recombinant Neisseria Type 2 IgA Protease

Abstract

Sequence–specific enzymatic cleavage of protein fusions is an important application in recombinant protein technology. We have used the Neisseria type 2 lgA protease (EC 3.4.24.13), produced and secreted by Escherichia coli host cells, for efficiently processing polypeptides at authentic or engineered target sites. In different substrates, the microbial protease specifically cleaves the peptide bond distal to the second Pro residue of the sequence Yaa–Pro–|–Xaa–Pro, where Yaa stands for Pro (or rarely for Pro in combination with Ala, Gly or Thr) and Xaa stands for Thr, Ser or Ala. Highly specific proteolysis has been obtained not only with soluble and purified protein fusions but also with insoluble aggregates derived from cytoplasmic inclusion bodies. The sequence–specificity and simple production of the recombinant IgA protease make it a versatile tool for the in vitro processing of recombinant proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Plant, A.G., Gilbert, J.V., Artenstein, M.S. and Capra, J.D. 1975. Neissrria gonorrhoeae and Neissena meningitidis: Extracellular enzyme cleaves human immunoglobillin A. Science 190: 1103–1105.

    Article  Google Scholar 

  2. Kilian, M., Mestecky, J. and Schrohenloher, R.E. 1979. Pathogenic species of the genus Haemophilus and Streptococcus pneumomiae produce Immunoglobulin A1 protease. Infect. Immun. 26: 143–149.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Mulks, M.H., Plaut, A.G., Feldman, H.A. and Frangionc, B. 1980. IgA proteases of two distinct specificities are released by Neisseria meningitidis . J. Exp. Med. 152: 1442–1447.

    Article  CAS  Google Scholar 

  4. Pohlner, J., Halter, R., Beyreuther, K. and Meyer, T.F. 1987. Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature 325: 458–462.

    Article  CAS  Google Scholar 

  5. Poulsen, K., Brandt, J., Hjorth, J.P., Thogersen, H.C. and Kilian, M. 1989 Cloning and sequencing of the immunoglobulin A1 protease gene (iga) of Haemophilus influenzae Serotype b. Infect. Immun. 57: 3097–3105.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Bachovchin, W.W., Plaut, A.G., Flentke, G.R., Lynch, M. and Kettner, C.A. 1990. Inhibition of IgA1 proteinases from Neisseria gonorrhoeae and Haemophilus influenzae by peptide prolyl boronic acids. J. Biol. Chem. 265: 3738–3743.

    CAS  PubMed  Google Scholar 

  7. Gilbert, J.V., Plaut, A.G. and Wright, A. 1991. Analysis of the immunoglobulin A protease gene of Streptococcus sanguis . Infect. Immun. 59: 7–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Mortensen, S.B. and Kilian, M. 1984. Purification and characterization of an irnmunoglobulin Al protease from Bacerioides melaninogenicus . Infect. Immun. 45: 550–557.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Halter, R., Pohlner, J. and Meyer, T.F. 1984. IgA protease of Neisseria gonorrhoeae: isolation and characterization of the gene and its extracellular product. EMBO J. 3: 1595–1601.

    Article  CAS  Google Scholar 

  10. Sung, W.L., Yao, F.-L., Zahab, D.M. and Narang, S.A. 1986. Short synthetic oligodeoxyribonucleotide leader sequences enhance accumulation of human proinsulin synthesized in Escherichia coli . Proc. Natl. Acad. Sci. USA 83: 561–565.

    Article  CAS  Google Scholar 

  11. Nagai, K. and Thogersen, H.C. 1984. Generation of β-globin by sequence-specific proteolysis of a hybrid protein produced in Escherichia coli . Nature 309: 810–812.

    Article  CAS  Google Scholar 

  12. Germino, J. and Bastia, D. 1984. Rapid purification of a cloned gene product by genetic fusion and site-specific proteolysis. Proc. Natl. Acad. Sci. USA 81: 4692–4696.

    Article  CAS  Google Scholar 

  13. Hopp, T.P., Prickett, K.S., Price, V.L., Libby, R.T., March, C.J., Gerretti, D.P., Urdal, D.L., and Conlon, P.J. 1988. A short polypeptide marker sequence useful for recombinant protein identification and purification. Bio/Technology 6: 1204–1210.

    Article  CAS  Google Scholar 

  14. Nagai, K. and Thogersen, H.C. 1987. Synthesis and sequence-specific proteolysis of hybrid proteins produced in Escherichia coli . Methods Enzymol. 153: 461–481.

    Article  CAS  Google Scholar 

  15. Asagoe, Y., Yasukawa, K., Saito, T., Maruo, N., Miyata, K., Kono, T., Miyake, T., Kato, T., Kakidani, H. and Mitani, M. 1988. Human B-cell stimulatory factor-2 expressed in Escherichia coii . Bio/Technology 6: 806–809.

    CAS  Google Scholar 

  16. Meyer, T.F., Halter, R. and Pohlner, J. 1987. Mechanism of extracellular secretion of an IgA protease by gram-negative host cells, p. 1271–1281. In: Recent Advances in Mucosal Immunology, Vol. 216B. McGheeJ. R., Mestecky, J., Ogra, P. L., and Bienenstock, J. (E.ds.). Plenum Press. New York.

    Google Scholar 

  17. Strcbel, K., Beck, E., Strohmaier, K.J. and Schaller, H. 1986. Characterization of Foot-and-Mouth Disease virus gene products with antisera against bacterially synthesized fusion proteins. J. Virol. 57: 983–991.

    Google Scholar 

  18. Halter, R., Pohlner, J. and Meyer, T.F. 1989. Mosaic-like organization of IgA protease genes in Neisseria gonorrhoeae: generated by horizontal genetic exchange in vivo . EMBO J. 8: 2737–2744.

    Article  CAS  Google Scholar 

  19. Pohlner, J., Maercker, C., Apfel, H. and Meyer, T.F. 1991. Molecular analyses of Neisseria and Haemophilus IgA proteases, p. 567–570. In: Frontiers of Mucosal Immunology, Vol. 1. Tsuchiya, M., Nagura, H. Hibi, T., and More, I. (Eds.). Excerpta Medica, Amsterdam-New York-Oxford.

    Google Scholar 

  20. Sukhatme, V.P., Sizer, K.C., Vollmer, A.C., Hunkapillar, I. and Parnes, J.R. 1985. The T cell differentiation antigen Leu-2/T8 is homologous to irnmunoglobulin and I cell receptor variable regions. Cell 40: 591–597.

    Article  CAS  Google Scholar 

  21. Klauser, T., Pohlner, J. and Meyer, T.F. 1990. Extracellular transport of cholera toxin B subunit using Neisseria IgA protease β-domairi: conformation-dependent outer membrane translocation. EMBO J. 9: 1991–1999.

    Article  CAS  Google Scholar 

  22. Klauser, T., Pohlner, J. and Meyer, T.F. 1992. Selective extracellular release of cholera toxin B subunit by Escherichia coli: Dissection of Neisseria Igaβ -mediated outer membrane transport. EMBO J. In press.

  23. Wood, S.G. and Burton, J. 1991. Synthetic peptide substrates for the immunoglobulin A1 protease from Neisseria gonorrhoeae (Type 2). Infect. Immun. 59: 1818–1822.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mollay, C., Vilas, V., Hutticher, A. and Kreil, G. 1986. Isolation of a dipeptidyl aminopeptidase, a putative processing enzyme, from skin secretion of Xenopus laevis . Eur.J. Biochem. 160: 31–35.

    Article  CAS  Google Scholar 

  25. Heins, J., Welker, P., Schonlein, G., Born, I., Hartrodt, B., Ncubert, K., Tsuru, D. and Barth, A. 1988. Mechanism of prolinc specific proteinases: (I) substrate specificity of dipeptidyl peptidase IV from pig kidney and proline-specific endopeptidase from Flavobacterium meningosepticum . Bio-chim. Biophys. Acta 954: 161–169.

    CAS  Google Scholar 

  26. Hennecke, F., Kolmar, H., Bründl, K. and Fritz, H.-J. 1992 The vsr gene product of E. coli K-12 is a strand- and sequence-specific DNA mismatch endonuclease. Nature 353: 776–778.

    Article  Google Scholar 

  27. Remaut, F., Tsao, H. and Fiers, W. 1983. Improved plasmid vectors with a thermoinducible expression and temperature-regulated runaway replication. Gene 22: 103–113.

    Article  CAS  Google Scholar 

  28. Earhart, C.F., Lundrigan, M., Pickett, C.L. and Pierce, J.R. 1979. Escherichia coli K-12 mutants that lack major outer membrane protein a . FEMS Microbiol. Lett. 6: 277–280.

    Article  CAS  Google Scholar 

  29. Saiki, R.K., Gelfand, D.H., Slotfel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B. and Erlich, H.A. 1988. Primer-directed enzvmatic amplification of DNA with a thermostable DNA polymerase. Science 230: 487–494.

    Article  Google Scholar 

  30. Pohlner, J., Meyer, T.F. and Manning, P.A. 1986. Serological properties and processing in Escherichia coli K12 of OmpV fusion Foteins of Vibrio cholerae . Mol. Gen. Genet. 205: 501–506.

    Article  CAS  Google Scholar 

  31. Remaut, E., Stanssens, P. and Fiers, W. 1981. Plasmid vectors for high-efficiency expression controlled by the: p1 promoter of coliphage lambda. Gene 15 81–93.

    Article  CAS  Google Scholar 

  32. Chen, E.Y. and Seeburg, P.H. 1985. Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA 4: 165–170.

    Article  CAS  Google Scholar 

  33. Hunkapiller, M.W., Lujan, E., Ostrander, F. and Hood, L.E. 1983. Isolation of microgram quantities of proteins from polyacrylamide gels for amino acid sequence analysis. Methods Enzymol. 91: 227–236.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pohlner, J., Klauser, T., Kuttler, E. et al. Sequence–Specific Cleave of Protein Fusion Using a Recombinant Neisseria Type 2 IgA Protease. Nat Biotechnol 10, 799–804 (1992). https://doi.org/10.1038/nbt0792-799

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0792-799

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing