Research Paper | Published:

Phage Vectors that Allow Monitoring of Transcription of Secondary Metabolism Genes in Streptomyces

Bio/Technologyvolume 9pages652656 (1991) | Download Citation



We describe a bacteriophage øC31-based system that permits the transcriptional fusion of the convenient reporter gene xylE to chromosomally located promoters in Streptomyces hosts. Applicability of the system to genes for secondary metabolism is demonstrated in an experiment showing that transcription of genes for actinorho-din production in Streptomyces coelicolor A3(2) depends on a transfer RNA gene (bldA) for the rare UUA codon. Two other øC31xylE vectors are described that allow detection of promoter activity away from their natural location, either at single copy in a prophage or during lytic infections in plaques.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Chater, K.F. 1990. The improving prospects for yield increase by genetic engineering in antibiotic-producing streptomycetes. Bio/Technology 8: 115–121.

  2. 2

    Ingram, C., Brawner, M., Youngman, P. and Westpheling, J. 1989. xylE functions as an efficient reporter gene in Streptomyces spp: use for the study of galPI, a catabolite-controlled promoter. J. Bacteriol. 171: 6617–6624.

  3. 3

    Zukowski, M.M., Gaffney, D.F., Speck, D., Kauffman, M., Findeli, A., Wisecup, A. and Lecocq, J-P. 1983. Chromogenic identification of genetic regulatory signals in Bacillus subtilis based on expression of a coloned Pseudomonas gene. Proc. Natl. Acad. Sci. USA 80: 1101–1105.

  4. 4

    Bibb, M.J. and Cohen, S.N. 1982. Gene expression in Streptomyces: construction and application of promoter-probe plasmid vectors in Streptomyces lividans. Mol. Gen. Genet. 187: 265–277.

  5. 5

    Ward, J.M., Janssen, G.R., Kieser, T., Bibb, M.J., Buttner, M.J. and Bibb, M.J. 1986. Gonslruction and characterisation of a series of multi-copy promoter-probe plasmid vectors for Streptomyces using the aminoglvcoside phosphotransferase gene from Tn5 as indicator. Mol. Gen. Genet. 203: 468–478.

  6. 6

    Stein, D.S., Kendall, K.J. and Cohen, S.N. 1989. Identification and analysis of transcriptional regulatory signals for the kil and kor loci of Streptomyces plasmid pIJ101. J. Bacteriol. 171: 5768–5775.

  7. 7

    Forsman, M. and Jaurin, B. 1987. Chromogenic identification of promoters in Streptomyces lividans by using an ampC β-lactamasc promoter-probe vector. Mol. Gen. Genet. 210: 23–32.

  8. 8

    Schauer, A., Ranes, M., Santamaria, R., Guijarro, J., Lawlor, E., Mendez, C., Chater, K. and Losick, R. 1988. Visualizing gene expression in time and space in the morphologically complex, filamentous bacterium Streptomyces coelicolor. Science 240: 768–772.

  9. 9

    King, A.A. and Chater, K.F. 1986. The expression of the Escherichia coli lacZ gene in Streptomyces. J. Gen. Microbiol. 132: 1739–1752.

  10. 10

    Brawner, M.E., Auerbach, J.I., Fornwald, J.A., Rosenberg, M. and Taylor, D.P. 1985. Characterization of Streptomyces promoter sequences using the Escherichia coli galactokinase gene. Gene 40: 191–201.

  11. 11

    Lawlor, E.J., Baylis, H.A. and Chater, K.F. 1987. Pleiotropic morphological and antibiotic deficiencies result from mutations in a gene encoding a tRNA-like product in Streptomyces coelicolor A3(2). Genes & Dev. 1: 1305–1310.

  12. 12

    Leskiw, B.K., Lawlor, E.J., Fernandez-Abalos, J.M. and Chater, K.F. 1991. TTA codons in some genes prevent their expression in a class of developmental, antibiotic-negative Streptomyces mutants. Proc. Natl. Acad. Sci. USA In press.

  13. 13

    Horinouchi, S. and Beppu, T. 1985. Construction and application of a promoter-probe plasmid that allows chromogenic identification in Streptomyces lividans. J. Bact. 162: 406–412.

  14. 14

    Feitelson, J.S. 1988. An improved plasmid for the isolation and analysis of Streptomyces promoters. Gene 66: 159–162.

  15. 15

    Davis, N.K. and Chater, K.F. 1990. Spore colour in Streptomyces coelicolor A3(2) involves the developmentally regulated synthesis of a compound biosynthetically related to polyketide antibiotics. Mol. Microbiol. 4: 1679–1691.

  16. 16

    Chater, K.F. 1986. Streptomyces phages and their applications to Streptomyces genetics, p. 119–158. In: The Bacteria, Vol. IX. Antibiotic-producing Streptomyces. S. E. Queener and L. E. Day (Eds.). Academic Press, Orlando, Florida.

  17. 17

    Chater, K.F. and Bruton, C.J. 1983. Mutational cloning and the isolation of antibiotic production genes. Gene 26: 67–78.

  18. 18

    Malpartida, F. and Hopwood, D.A. 1986. Physical and genetic characterisation of the gene cluster for the antibiotic actinorhodin in Streptomyces coelicolor A3(2). Mol. Gen. Genet. 205: 66–73.

  19. 19

    Guthrie, E.P. and Chater, K.F. 1990. The level of a transcript required for production of a Streptomyces coelicolor antibiotic is conditionally dependent on a tRNA gene. J Bacteriol. 172: 6189–6193.

  20. 20

    Malpartida, F., Hallam, S.E., Kieser, H.M., Motamedi, H., Hutchinson, C.R., Butler, M.J., Sugden, D.A., Warren, M., McKillop, C., Bailey, C.R., Humphreys, G.O. and Hopwood, D.A. 1987. Homology between Streptomyces genes coding for synthesis of different polyketides used to clone antibiotic synthesis genes. Nature 325: 818–821.

  21. 21

    Merrick, M.J. 1976. A morphological and genetic mapping study of bald colony mutants of Streptomyces coelicolor. J. Gen. Microbiol. 96: 299–315.

  22. 22

    Hopwood, D.A., Bibb, M.J., Chater, K.F., Kieser, T., Bruton, C.J., Keiser, H.M., Lydiate, D.J., Smith, C.P., Ward, J.M. and Schrempf, H. 1985. Genetic Manipulation of Streptomyces—A Laboratory Manual. The John Innes Foundation, Norwich.

  23. 23

    Clayton, T.M. and Bibb, M.J. 1990. Streptomyces promoler-probe plasmids that utilise the xylE gene of Pseudomonas putida. Nucl. Acids Res. 18: 1077.

  24. 24

    Gentz, R., Langner, A., Chang, A.C.Y., Cohen, S.N. and Bujard, H. 1981. Cloning and analysis of strong promoters is made possible by the downstream placement of an RNA termination signal. Proc. Natl. Acad. Sci. USA 78: 4931–4940.

  25. 25

    Hopwood, D.A. and Sherman, D.H. 1990. Molecular genetics of polyketides and its comparison to fatty acid biosynthesis. Ann. Rev. Genet. 24: 37–66.

  26. 26

    Chater, K.F., Bruton, C.J., King, A.A. and Suarez, J.E. 1982. The expression of Streptomyces and Escherichia coli drug resistance determinants cloned into the Streptomyces phage øC31. Gene 19: 21–32.

  27. 27

    Seno, E.T., Bruton, C.J. and Chater, K.F. 1984. The glycerol utilization operon of Streptomyces coelicolor: genetic mapping of gyl mutations and the analysis of cloned gyl DNA. Mol. Gen. Genet. 193: 114–128.

  28. 28

    Chater, K.F., Bruton, C.J., Plaskitt, K.A., Buttner, M.J., Méndez, C. and Helmann, J. 1989. The developmental fate of Streptomyces coelicolor hyphae depends crucially on a gene product homologous with the motility sigma factor of Bacillus subtilis. Cell 59: 133–143.

  29. 29

    Smith, C.P. and Chater, K.F. 1988. Cloning and transcription analysis of the entire glycerol utilization (gylABX) operon of Streptomyces coelicolor A3(2) and identification of a closely associated transcription unit. Mol. Gen. Genet. 211: 129–137.

  30. 30

    Rodriguez, A., Caso, J.L., Hardisson, C. and Suarez, J.E. 1986. Characteristics of the developmental cycle of actinophage øC31. J. Gen. Microbiol. 132: 1695–1701.

  31. 31

    Clayton, T.M. and Bibb, M.J. 1991. Induction of a øC31 prophage inhibits rRNA transcription in Streptomyces coelicolor A3(2). Mol. Microbiol. 4: 2179–2185.

  32. 32

    Leblond, P., Demuyter, P., Simonet, J.M. and Decaris, B. 1990. Genetic instability and hypervariability in Streptomyces ambofaciens: towards an understanding of a mechanism of genome plasticity. Mol. Microbiol. 4: 707–714.

  33. 33

    Rudd, B.A.M. and Hopwood, D.A. 1979. Genetics of actinorhodin biosynthesis by Streptomyces coelicolor A3(2). J. Gen. Microbiol. 114: 35–43.

  34. 34

    Distler, J., Ebert, A., Mansouri, K., Pissowotzki, K., Stockmann, M. and Piepersberg, W. 1987. Gene cluster for streptomycin biosynthesis in Streptomyces griseus: nucleotide sequence of three genes and analysis of transcriptional activity. Nucleic Acids Res. 15: 8041–8056.

  35. 35

    Hopwood, D.A., Bibb, M.J., Chater, K.F. and Kieser, T. 1986. Plasmid and phage vectors for gene cloning and analysis in Streptomyces, p. 116–166. In: Methods in Enzymology, Vol. 153. Recombinant DNA. R. Wu and L. Grossman (Eds.). Academic Press, New York.

  36. 36

    Zukowski, M.M. and Miller, L. 1986. Overproduction of an intracellular heterologous protein in a sacUh mutant of Bacillus subtilis. Gene 46: 247–255.

  37. 37

    Yanisch-Perron, C., Vieira, J. and Messing, J. 1985. Improved M13 vectors and host strains: nucleotide sequences of the M13 mpl8 and pUC19 vectors. Gene 33: 103–119.

  38. 38

    Maniatis, T., Frisch, E.F. and Sambrook, J. 1982. Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Press, New York.

  39. 39

    Hayes, S. and Szybalski, W. 1973. Control of short leftward transcripts from the immunity and ori regions in induced coliphage lambda. Mol. Gen. Genet. 126: 275–290.

Download references

Author information

Author notes

    • Ellen P. Guthrie

    Present address: New England Biolabs, 32 Tozer Road, Beverly, MA, 01915, USA

  1. Keith F. Chater: Corresponding author.


  1. John Innes Institute, John Innes Centre for Plant Science, Colney Lane, Norwich, NR4 7UH, U.K.

    • Celia J. Bruton
    •  & Keith F. Chater


  1. Search for Celia J. Bruton in:

  2. Search for Ellen P. Guthrie in:

  3. Search for Keith F. Chater in:

About this article

Publication history



Issue Date


Further reading