Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Using Antisense RNA to Study Gene Function: Inhibition of Carotenoid Biosynthesis in Transgenic Tomatoes

Abstract

Transgenic tomato plants expressing antisense RNA to a ripening related gene (pTOM5) have yellow ripening fruit and pale colored flowers. The yellow fruit color is correlated with a severe reduction in the level of the pTOMS gene mRNA during fruit ripening. The level of carotenoids in ripening fruit from selected transgenic plants showing yellow fruit was reduced by more than 97 percent. In addition, the carotenoid lycopene, which is primarily responsible for the red color of ripening fruit, was reduced to undetectable levels (<0.1%). These data indicate that the pTOM5 gene is crucial to tomato fruit carotenoid biosynthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. van der Krol, A.R., Lenting, P.E., Veenstra, J., van der Meer, I.M., Koes, R.E., Gerats, A.G.M., Mol, J.N.M. and Stuitje, A.R. 1988. An antisense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 333: 866–869.

    Article  CAS  Google Scholar 

  2. Smith, C.J.S., Watson, C.F., Ray, J., Bird, C.R., Morris, P.C., Schuch, W. and Grierson, D. 1988. Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes. Nature 334: 724–726.

    Article  CAS  Google Scholar 

  3. Rodermel, S.R., Abbott, M.S. and Bogorad, L. 1988. Nuclear-organelle interactions: Nuclear antisense gene inhibits ribulose bisphosphate carboxylase enzyme levels in transformed tobacco plants. Cell 55: 673–681.

    Article  CAS  Google Scholar 

  4. Sheehy, R.E., Kramer, M. and Hiatt, W.R. 1988. Reduction of polygalacturonase activity in tomato fruit by antisense RNA. Proc. Natl. Acad. Sci. USA 85: 8805–8809.

    Article  CAS  Google Scholar 

  5. Stockhaus, J., Hofer, M., Renger, G., Westhoff, P., Wydrzynski, T. and Willmitzer, L. 1990. Anti-sense RNA efficiently inhibits formation of the 10 kd polypeptide of photosystem II in transgenic potato plants: analysis of the role of the 10 kd protein. EMBO J. 9: 3013–3021.

    Article  CAS  Google Scholar 

  6. Hamilton, A.J., Lycett, G.W. and Grierson, D. 1990. Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature 346: 284–287.

    Article  CAS  Google Scholar 

  7. Smith, C.J.S., Watson, C.F., Morris, P.C., Bird, C.R., Seymour, G.B., Gray, J.E., Arnold, C., Tucker, G.A., Schuch, W., Harding, S. and Grierson, D. 1990. Inheritance and effect on ripening of antisense polygalacturonase genes in transgenic tomatoes. Plant Mol. Biol. 14: 369–379.

    Article  CAS  Google Scholar 

  8. Slater, A., Maunders, M.J., Edwards, K., Schuch, W. and Grierson, D. 1985. Isolation and characterisation of cDNA clones for tomato polygalacturonase and other ripening-related proteins. Plant. Mol. Biol. 5: 137–147.

    Article  CAS  Google Scholar 

  9. Mansson, P.-E., Hsu, D. and Stalker, D. 1985. Characterisation of fruit specific cDNAs from tomato. Mol. Gen. Genet. 200: 356–361.

    Article  CAS  Google Scholar 

  10. Lincoln, J.E., Cordes, S., Read, E. and Fischer, R.L. 1987. Regulation of gene expression by ethylene during Lycopersicm esculentum fruit development. Proc. Natl. Acad. Sci. USA 84: 2793–2797.

    Article  CAS  Google Scholar 

  11. Ray, J., Bird, C.R., Maunders, M., Grierson, D. and Schuch, W. 1987. Sequence of pTOM5, a ripening related cDNA from tomato. Nucl. Acids Res. 24: 10587.

    Article  Google Scholar 

  12. Maunders, M.J., Holdsworth, M.J., Slater, A., Knapp, J., Bird, C.R., Schuch, W. and Grierson, D. 1987. Ethylene stimulates the accumulation of ripening-related mRNAs in tomatoes. Plant, Cell Environ. 10: 177–184.

    CAS  Google Scholar 

  13. Armstrong, G.A., Alberti, M. and Hearst, J.E. 1990. Conserved enzymes mediate the early reactions of carotenoid biosynthesis in nonphotosynthetic and photosynthetic prokaryotes. Proc. Natl. Acad. Sci. USA. 87: 9975–9979.

    Article  CAS  Google Scholar 

  14. Bird, C.R., Smith, C.J.S., Ray, J.A., Moureau, P., Sevan, M.W., Bird, A.S., Hughes, S., Morris, P.C., Grierson, D. and Schuch, W. 1988. The tomato polygalacturonase gene and ripening-specific expression in transgenic plants. Plant Mol. Biol. 11: 651–662.

    Article  CAS  Google Scholar 

  15. Porter, J.W. and Lincoln, R.E. 1950. I. Lycopersicon selections containing a high content of carotenes and colorless polyenes. II. The mechanism of carotenoid biosynthesis. Arch. Biochem. 27: 390–403.

    CAS  PubMed  Google Scholar 

  16. Knapp, J., Moureau, P., Schuch, W. and Grierson, D. 1989. Organisation and expression of polygalacturonase and other ripening related genes in Ailsa Craig ‘Neverripe’ and ‘Ripening inhibitor’ tomato mutants. Plant Mol. Biol. 12: 105–116.

    Article  CAS  Google Scholar 

  17. Stevens, M.A. and Rick, C.M. 1989. Genetics and breeding, p. 35–109. In: The Tomato Crop. Atherton J. G. and Rudich J. J. (Eds.). Chapman and Hall, New York.

    Google Scholar 

  18. Armstrong, G.A., Alberti, M., Leach, F. and Hearst, J.E. 1989. Nucleotide sequence, organisation and Nature of the protein products of the carotenoid biosynthesis gene cluster of Rhodobacter capsulatus. Mol. Gen. Genet. 216: 254–268.

    Article  CAS  Google Scholar 

  19. Dogbo, O., Laferriere, A., D'Harlingue, A. and Camara, B. 1988. Carotenoid biosynthesis: Isolation and characterization of a bifunctional enzyme catalyzing the synthesis of phytoene. Proc. Natl. Acad. Sci. USA. 85: 7054–7058.

    Article  CAS  Google Scholar 

  20. Frecknall, E.A. and Pattenden, G. 1984. Carotenoid differences in isogenic lines of tomato fruit colour mutants. Phytochemistry. 23: 1707–1710.

    Article  CAS  Google Scholar 

  21. Darby, L.A., Ritchie, D.B. and Taylor, I.B. 1978. Isogenic lines of the tomato ‘Ailsa Craig’. Ann. Rep. Glasshouse Crops Research Inst. 168–184.

  22. Kinzer, S.M., Schwager, S.J. and Mutschler, M.A. 1990. Mapping of ripening-related or -specific cDNA clones of tomato. Theor. Appl. Genet. 79: 489–496.

    Article  CAS  Google Scholar 

  23. Bevan, M.W. 1984. Agrobacterium vectors for plant transformation. Nucl. Acids Res. 12: 8711–8721.

    Article  CAS  Google Scholar 

  24. Lichtenstein, C. and Draper, J. 1985. Genetic engineering of plants, p. 67–120. In: DNA Cloning, Vol II (Glover, M. D. (Ed.). IRL Press, Oxford).

    Google Scholar 

  25. Britton, G. 1985. General carotenoids methods. Methods Enzymol. 111: 113–149.

    Article  CAS  Google Scholar 

  26. Lichtenthaler, H.K. and Wellburn, A.R. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 11: 591–592.

    Article  CAS  Google Scholar 

  27. Davies, B.H. 1976. Carotenoids, p. 38–162. In: Chemistry and Biochemistry of Plant Pigments, Goodwin T. W. (Ed.). Academic Press, London and New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bird, C., Ray, J., Fletcher, J. et al. Using Antisense RNA to Study Gene Function: Inhibition of Carotenoid Biosynthesis in Transgenic Tomatoes. Nat Biotechnol 9, 635–639 (1991). https://doi.org/10.1038/nbt0791-635

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0791-635

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing