Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Development of a Genetically–Engineered, Candidate Polio Vaccine Employing the Self–Assembling Properties of the Tobacco Mosaic Virus Coat Protein

Abstract

A synthetic gene coding for the coat protein of tobacco mosaic virus (TMVCP) was expressed in E. coli under the direction of the lacUV5 promoter. Modification of the 3′ end of the TMVCP gene by insertion of a region coding for an antigenic epitope from poliovirus type 3 resulted in the production of a hybrid TMVCP (TMVCP–polio 3). Both the E. coli–produced TMVCP and TMVCP–polio 3 were shown to assemble into virus–like rods under acidic conditions in E. coli extracts. Their purification was accomplished in a single step by chromatography on Sepharose 6B. TMVCP–polio 3 induced the formation of poliovirus neutralizing antibodies following injection into rats. The level of immune response was related to the degree of polymerization of the TMVCP–polio 3 preparations.

References

  1. 1

    Chow, M., Yabrov, R., Bittle, J., Hogle, J., and Baltimore, D. 1985. Synthetic peptides from four separate regions of the poliovirus type 1 capsid protein VP1 induce neutralizing antibodies. Proc. Natl. Acad. Sci. USA 82:910–914.

    CAS  Article  Google Scholar 

  2. 2

    Nestorowicz, A., Tregear, G.W., Southwell, C.N., Martyn, J., Murray, J.M., White, D.O., and Jackson, D.C. 1985. Antibodies elicited by influenza virus hemagglutinin fail to bind to synthetic peptides representing putative antigenic sites. Molecular Immunology 22:145–154.

    CAS  Article  Google Scholar 

  3. 3

    Almond, J.W., Stanway, G., Cann, A.J., Westrop, G.D., Evans, D.M.A., Ferguson, M., Minor, P.D., Spitz, M., and Schild, G.C. 1984. New poliovirus vaccines: a molecular approach. Vaccine 2:177–184.

    CAS  Article  Google Scholar 

  4. 4

    Hopp, T.P. 1984. Immunogenicity of a synthetic HBsAg peptide: enhancement by conjugation to a fatty acid carrier. Molecular Immunology 21:13–16.

    CAS  Article  Google Scholar 

  5. 5

    Shapira, M., Jibson, M., Muller, G., and Arnon, R. 1984. Immunity and protection against influenza virus by synthetic peptide corresponding to antigenic sites of hemagglutinin. Proc. Natl. Acad. Sci. USA 81:2461–2465.

    CAS  Article  Google Scholar 

  6. 6

    Emini, E.A., Jameson, B.A., and Wimmer, E. 1983. Priming for and induction of anti-poliovirus neutralizing antibodies by synthetic peptides. Nature 304:699–703.

    CAS  Article  Google Scholar 

  7. 7

    Gerin, J.L., Alexander, H., Shih, J.W.-K., Purcell, R.H., Dapolito, G., Engle, R., Green, N., Sutcliffe, J.G., Shinnick, T.M., and Lerner, R.A. 1983. Chemically synthesized peptides of hepatitis B surface antigen duplicate the d/y specificities and induce subtype-specific antibodies in chimpanzees. Proc. Natl. Acad. Sci. USA 80:2365–2369.

    CAS  Article  Google Scholar 

  8. 8

    Neurath, A.R., Kent, S.B.H., and Strick, N. 1982. Specificity of antibodies elicited by a synthetic peptide having a sequence in common with a fragment of a virus protein, the hepatitis B surface antigen. Proc. Natl. Acad. Sci. USA 79:7871–7875.

    CAS  Article  Google Scholar 

  9. 9

    Dreesman, G.R., Sanchez, Y., Ionescu-Matiu, I., Sparrow, J.T., Six, H.R., Peterson, D.L., Hollinger, F.B., and Melnick, J.L. 1982. Antibody to hepatitis B surface antigen after a single inoculation of uncoupled synthetic HBsAg peptides. Nature 295:158–160.

    CAS  Article  Google Scholar 

  10. 10

    Lerner, R.A., Green, N., Alexander, H., Liu, F.-T., Sutcliffe, G., and Shinnick, T.M. 1981. Chemically synthesized peptides predicted from the nucleotide sequence of the hepatitis B virus genome elicit antibodies reactive with the native envelope protein of Dane particles. Proc. Natl. Acad. Sci. USA 78:3403–3407.

    CAS  Article  Google Scholar 

  11. 11

    Butler, P.J.G. 1984. The current picture of the structure and assembly of tobacco mosaic virus. J. Gen. Virol. 65:253–279.

    CAS  Article  Google Scholar 

  12. 12

    Grosjean, H., and Fiers, W. 1982. Preferential codon usage in prokaryotic genes: the optimal codon-anticodon energy and the selective codon usage in efficiently expressed genes. Gene 18:199–209.

    CAS  Article  Google Scholar 

  13. 13

    Goelet, P., Lomonossoff, G.P., Butler, P.J.G., Akam, M.E., Gait, M.J., and Karn, J. 1982. Nucleotide sequence of tobacco mosaic virus RNA. Proc. Natl. Acad. Sci. USA 79:5818–5822.

    CAS  Article  Google Scholar 

  14. 14

    Fuller, F. 1982. A family of cloning vectors containing the lacUV5 promoter. Gene 19:43–54.

    CAS  Article  Google Scholar 

  15. 15

    Evans, D.M.A., Minor, P.D., Schild, G.S., and Almond, J.W. 1983. Critical role of an eight-amino acid sequence of VP1 in neutralization of poliovirus type 3. Nature 304:459–462.

    CAS  Article  Google Scholar 

  16. 16

    Durham, A.C.H. and Klug, A. 1972. Structures and roles of the polymorphic forms of tobacco mosaic virus protein. III. A model for the association of A-protein into disks. J. Mol. Biol. 67:315–332.

    CAS  Article  Google Scholar 

  17. 17

    Durham, A.C.H. and Finch, J.T. 1972. Structures and roles of the polymorphic forms of tobacco mosaic virus protein. II. Electron microscopic observations of the larger polymers. J. Mol. Biol. 67:307–314.

    CAS  Article  Google Scholar 

  18. 18

    Valenzuela, P., Coit, D., Medina-Selby, A., Kuo, C., Van Nest, G., Burke, R.L., Bull, P., Urdea, M.S., and Graves, R.V. 1985. Antigen engineering in yeast: Synthesis and assembly of hybrid hepatitis B surface antigen-herpes simplex 1 gD particles. BioTechnology 3:323–326.

    CAS  Google Scholar 

  19. 19

    Gordon, L.K. 1984. Characterization of a hapten-carrier conjugate vaccine: H. influenzae-diphtheria conjugate vaccine, p. 393–396 In: Modern Approaches to Vaccines. R. M. Chanock and R. A. Lerner (eds.) Cold Spring Harbor, NY.

    Google Scholar 

  20. 20

    Schutze, M.-P., Leclerc, C., Jolivet, M., Audibert, F., and Chedid, L. 1985. Carrier-induced epitopic suppression, a major issue for future synthetic vaccines. J. Immunology 135:2319–2322.

    CAS  Google Scholar 

  21. 21

    Sanger, F. and Coulson, A.R. 1978. The use of thin polyacrylamide gels for DNA sequencing. FEBS Lett. 87:107–110.

    CAS  Article  Google Scholar 

  22. 22

    Clarke, P., Lin, H.-C., and Wilcox, G. 1982. Ultraviolet imaging: a simple method for detecting nucleic acids in preparative gels. Analytical Biochem. 124:88–91.

    CAS  Article  Google Scholar 

  23. 23

    Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.

    CAS  Article  Google Scholar 

  24. 24

    Lee, C.-Y.G., Huang, Y.-S., Hu, P.-C., Gomer, V., and Menge, A.C. 1982. Analysis of sperm antigens by sodium dodecyl sulfate gel/protein blot radioimmunobinding method. Analytical Biochem. 123:14–22.

    CAS  Article  Google Scholar 

  25. 25

    van Steenis, G., van Wezel, A.L., and Sekhuis, V.M. 1981. Potency testing of killed polio vaccine in rats. Dev. Biol. Stand. 47:119–128.

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Haynes, J., Cunningham, J., von Seefried, A. et al. Development of a Genetically–Engineered, Candidate Polio Vaccine Employing the Self–Assembling Properties of the Tobacco Mosaic Virus Coat Protein. Nat Biotechnol 4, 637–641 (1986). https://doi.org/10.1038/nbt0786-637

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing