Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Determination of protease cleavage site motifs using mixture-based oriented peptide libraries

Abstract

The number of known proteases is increasing at a tremendous rate as a consequence of genome sequencing projects. Although one can guess at the functions of these novel enzymes by considering sequence homology to known proteases, there is a need for new tools to rapidly provide functional information on large numbers of proteins. We describe a method for determining the cleavage site specificity of proteolytic enzymes that involves pooled sequencing of peptide library mixtures. The method was used to determine cleavage site motifs for six enzymes in the matrix metalloprotease (MMP) family. The results were validated by comparison with previous literature and by analyzing the cleavage of individually synthesized peptide substrates. The library data led us to identify the proteoglycan neurocan as a novel MMP-2 substrate. Our results indicate that a small set of libraries can be used to quickly profile an expanding protease family, providing information applicable to the design of inhibitors and to the identification of protein substrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Cleavage-site specificity of MMP-7 (matrilysin).
Figure 3: MMP-2 can act as a neurocan-processing enzyme in vitro.

Similar content being viewed by others

References

  1. Matthews, D.J. & Wells, J.A. Substrate phage: selection of protease substrates by monovalent phage display. Science 260, 1113–1117 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Smith, M.M., Shi, L. & Navre, M. Rapid identification of highly active and selective substrates for stromelysin and matrilysin using bacteriophage display libraries. J. Biol. Chem. 270, 6440–6449 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Rano, T.A. et al. A combinatorial approach for determining protease specificities: application to interleukin-1β converting enzyme (ICE). Chem. Biol. 4, 149–155 (1996).

    Article  Google Scholar 

  4. Backes, B.J., Harris, J.L., Leonetti, F., Craik, C.S. & Ellman, J.A. Synthesis of positional-scanning libraries of fluorogenic peptide substrates to define the extended substrate specificity of plasmin and thrombin. Nat. Biotechnol. 18, 187–193 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Harris, J.L. et al. Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proc. Natl. Acad. Sci. USA 97, 7754–7759 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Birkett, A.J. et al. Determination of enzyme specificity in a complex mixture of peptide substrates by N-terminal sequence analysis. Anal. Biochem. 196, 137–143 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Petithory, J.R., Masiarz, F.R., Kirsch, J.F., Santi, D.V. & Malcolm, B.A. A rapid method for determination of endoproteinase substrate specificity: Specificity of the 3C proteinase from hepatitis A virus. Proc. Natl. Acad. Sci. USA 88, 11510–11514 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Arnold, D. et al. Substrate specificity of cathepsins D and E determined by N-terminal and C-terminal sequencing of peptide pools. Eur. J. Biochem. 249, 171–179 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Berman, J. et al. Rapid optimization of enzyme substrates using defined substrate mixtures. J. Biol. Chem. 267, 1434–1437 (1992).

    CAS  PubMed  Google Scholar 

  10. Songyang, Z. et al. SH2 domains recognize specific phosphopeptide sequences. Cell 72, 767–778 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Songyang, Z. et al. Use of an oriented peptide library to determine the optimal substrates of protein kinases. Curr. Biol. 4, 973–982 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Songyang, Z. et al. Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 275, 73–77 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Yaffe, M. B. et al. The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 91, 961–971 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Johnson, L.L., Dyer, R. & Hupe, D.J. Matrix metalloproteinases. Curr. Opin. Chem. Biol. 2, 466–471 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Woessner, J.F. & Nagase, H. Matrix metalloproteinases and TIMPs. (Oxford University Press, Oxford, UK; 2000).

    Google Scholar 

  16. Nagase, H. & Fields, G.B. Human matrix metalloproteinase specificity studies using collagen sequence-based synthetic peptides. Biopolymers 40, 399–416 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Fields, G.B., Van Wart, H.E. & Birkedal-Hansen, H. Sequence specificity of human skin fibroblast collagenase. J. Biol. Chem. 262, 6221–6226 (1987).

    CAS  PubMed  Google Scholar 

  18. Teahan, J., Harrison, R., Izquierdo, M. & Stein, R.L. Substrate specificity of human fibroblast stromelysin. Hydrolysis of substance P and its analogues. Biochemistry 28, 8497–8501 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Netzel-Arnett, S., Fields, G., Birkedal-Hansen, H. & Van Wart, H.E. Sequence specificities of human fibroblast and neutrophil collagenases. J. Biol. Chem. 266, 6747–6755 (1991).

    CAS  PubMed  Google Scholar 

  20. Niedzwiecki, L, Teahan, J., Harrison, R.K. & Stein, R.L. Substrate specificity of the human matrix metalloproteinase stromelysin and the development of continuous fluorometric assays. Biochemistry 31, 12618–12623 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Netzel-Arnett, S. et al. Comparative sequence specificities of human 72- and 92-kDa gelatinases (type IV collagenases) and PUMP (matrilysin). Biochemistry 32, 6427–6432 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Nagase, H., Fields, C.G. & Fields, G.B. Design and characterization of a fluorogenic substrate selectively hydrolyzed by stromelysin 1 (matrix metalloproteinase-3). J. Biol. Chem. 269, 20952–20957 (1994).

    CAS  PubMed  Google Scholar 

  23. Deng, S.-J. et al. Substrate specificity of human collagenase 3 assessed using a phage-displayed peptide library. J. Biol. Chem. 275, 31422–31427 (2000).

    Article  PubMed  Google Scholar 

  24. McGeehan, G.M. et al. Characterization of the peptide substrate specificities of interstitial collagenase and 92-kDa gelatinase: implications for substrate optimization. J. Biol. Chem. 269, 32814–32820 (1994).

    CAS  PubMed  Google Scholar 

  25. Schechter, I. & Berger, A. On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun. 27, 157–62 (1967).

    Article  CAS  PubMed  Google Scholar 

  26. Welch, A.R. et al. Understanding the P1' specificity of the matrix metalloproteinases: effect of S1' pocket mutations in matrilysin and stromelysin-1. Biochemistry 35, 10103–10109 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Yaffe, M.B. et al. A motif-based profile scanning approach for genome-wide prediction of signaling pathways. Nat. Biotechnol. 19, 348–353 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Liu, Z. et al. The serpin α1-proteinase inhibitor is a critical substrate for gelatinase B/MMP-9 in vivo. Cell 102, 647–655 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Desrochers, P.E., Mookhtiar, K., Van Wart, H.E., Hasty, K.A. & Weiss, S.J. Proteolytic inactivation of α1-proteinase inhibitor and α1-antichymotrypsin by oxidatively activated human neutrophil metalloproteinases. J. Biol. Chem. 267, 5005–5012 (1992).

    CAS  PubMed  Google Scholar 

  30. von Bredow, D.C., Nagle, R.B., Bowden, G.T. & Cress, A.E. Cleavage of β4 integrin by matrilysin. Exp. Cell Res. 236, 341–345 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Rauch, U., Karthikeyan, L., Maurel, P., Margolis, R.U. & Margolis, R.K. Cloning and primary structure of neurocan, a developmentally regulated, aggregating chondroitin sulfate proteoglycan of brain. J. Biol. Chem. 267, 19536–19547 (1992).

    CAS  PubMed  Google Scholar 

  32. Meyer-Puttlitz, B. et al. Chondroitin sulfate and chondroitin/keratan sulfate proteoglycans of nervous tissue: developmental changes of neurocan and phosphacan. J. Neurochem. 65, 2327–2337 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Mucha, A. et al. Membrane type-1 matrix metalloprotease and stromelysin-3 cleave more efficiently synthetic substrates containing unusual amino acids in their P1′ positions. J. Biol. Chem. 273, 2763–2768 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Ridky, T.W. et al. Human immunodeficiency virus, type 1 protease substrate specificity is limited by interactions between substrate amino acids bound in adjacent enzyme subsites. J. Biol. Chem. 271, 4709–4717 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Rauch, U. et al. Isolation and characterization of developmentally regulated chondroitin sulfate and chondroitin/keratan sulfate proteoglycans of brain identified with monoclonal antibodies. J. Biol. Chem. 266, 14785–14801 (1991).

    CAS  PubMed  Google Scholar 

  36. Fernandez-Patron, C., Radomski, M.W. & Davidge, S.T. Vascular matrix metalloproteinase-2 cleaves big endothelin-1 yielding a novel vasoconstrictor. Circ. Res. 85, 906–911 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Nakamura, H. et al. Brevican is degraded by matrix metalloproteinases and aggrecanase-1 (ADAMTS4) at different sites. J. Biol. Chem. 275, 38885–38890 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. McQuibban, G.A. et al. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science 289, 1202–1206 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Sasaki, T. et al. Limited cleavage of extracellular matrix protein BM-40 by matrix metalloproteinases increases its affinity for collagens. J. Biol. Chem. 272, 9237–9243 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Purified neurocan was a generous gift from Richard U. Margolis of the Department of Pharmacology, New York University Medical Center. The 1F6 anti-neurocan monoclonal antibody developed by Renee K. Margolis and Richard U. Margolis was obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the National Institute of Child Health and Human Development and maintained by the University of Iowa Department of Biological Sciences. We thank Michael Yaffe, Thomas McGarry, Reuben Shaw, and Seth Field for helpful comments on the manuscript. We acknowledge Michael Yaffe and John V. Frangioni for initiating work in the lab on proteases with peptide libraries and for helpful discussions. This work was supported by grants from the National Institutes of Health (GM56203, and NRSA fellowship GM19895-01 to B.E.T.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lewis C. Cantley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turk, B., Huang, L., Piro, E. et al. Determination of protease cleavage site motifs using mixture-based oriented peptide libraries. Nat Biotechnol 19, 661–667 (2001). https://doi.org/10.1038/90273

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/90273

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing