Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length

Abstract

In most tree-breeding programs worldwide, increasing the trees' growth rates and stem volumes and shortening their rotation times are important aims. Such trees would yield more biomass per unit area. Here we show that overexpressing a key regulatory gene in the biosynthesis of the plant hormone gibberellin (GA) in hybrid aspen (Populus tremula × P. tremuloides) improves growth rate and biomass. In addition, these transgenic trees have more numerous and longer xylem fibers than unmodified wild-type (wt) plants. Long fibers are desirable in the production of strong paper, but it has not as yet proved possible to influence this trait by traditional breeding techniques. We also show that GA has an antagonistic effect on root initiation, as the transgenic lines showed poorer rooting than the control plants when potted in soil. However, the negative effect on rooting efficiencies in the initial establishment of young plantlets in the growth chamber did not significantly affect root growth at later stages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biosynthetic pathways converting
Figure 2: Northern analysis of 10 GA 20-oxidase overexpressing lines (numbers 1–15) and the control (C).
Figure 3: Enhanced growth of transgenic hybrid aspen.
Figure 4: Effects of GA 20-oxidase overexpression on (A) cell length (B) cell number per internode (C) number of xylem fibers, and (D) xylem fiber length.

Similar content being viewed by others

References

  1. Cheliak, W.M. & Rogers, D.L. Integrating biotechnology into tree improvement program. Can. J. For. Res. 20, 452–463 (1990).

    Article  Google Scholar 

  2. Van Doorsselaere, J. et al. A novel lignin in poplar trees with a reduced caffeic acid 5-hydroxyferulic acid o-methyltransferase activity. Plant J. 8, 855–864 (1995).

    Article  CAS  Google Scholar 

  3. Hu, W.J. et al. Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat. Biotechnol. 17, 808–812 (1999).

    Article  CAS  Google Scholar 

  4. Weigel, D. & Nilsson, O. A developmental switch sufficient for flowering initiation in diverse plants. Nature 377, 495–500 (1995).

    Article  CAS  Google Scholar 

  5. Wang, G.J. et al. Poplar (Populus nigra L) plants transformed with a Bacillus thuringiensis toxin gene: insecticidal activity and genomic analysis. Transgen. Res. 5, 289–301 (1996).

    Article  CAS  Google Scholar 

  6. Fillati, J.-A.J., Sellmer, J., McCown, B., Haissig, B. & Comai, L. Agrobacterium-mediated transformation and regeneration of Populus. Mol. Gen. Genet. 206, 192–199 (1987).

    Article  Google Scholar 

  7. Tuominen, H. et al. Altered growth and wood characterstics in transgenic hybrid aspen expressing the Agrobacterium tumefaciens T-DNA indoleacetic-acid biosynthetic genes. Plant Physiol. 109, 1179–1189 (1995).

    Article  CAS  Google Scholar 

  8. Vonschwartzenberg, K., Doumas, P., Jouanin, L. & Pilate, G. Enhancement of the endogenous cytokinin concentration in poplar by transformation with Agrobacterium T-DNA gene ipt. Tree Physiol 14, 27–35 (1994).

    Article  CAS  Google Scholar 

  9. Nilsson, O., Moritz, T., Sundberg, B., Sandberg, G. & Olsson, O. Expression of the Agrobacterium rhizogenes rolC gene in a deciduous forest tree alters growth and development and leads to stem fasciation. Plant Physiol 112, 493–502 (1996).

    Article  CAS  Google Scholar 

  10. Kende, H. & Zeevaart, J.A.D. The five “classical” plant hormones. Plant Cell 9, 1197–1210 (1997).

    Article  CAS  Google Scholar 

  11. Hedden, P. & Proebsting, W.M. Genetic analysis of gibberellin biosynthesis. Plant Physiol. 119, 365–370 (1999).

    Article  CAS  Google Scholar 

  12. Hedden, P. & Kamiya, Y. Gibberellin biosynthesis: enzymes, genes and their regulation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 431–460 (1997).

    Article  CAS  Google Scholar 

  13. Phillips, A.L. et al. Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis. Plant Physiol. 108, 1049–1057 (1995).

    Article  CAS  Google Scholar 

  14. Xu, Y.L., Li, L., Gage, D.A. & Zeevaart, J.A.D. Feedback regulation of GA5 expression and metabolic engineering of gibberellin levels in Arabidopsis. Plant Cell 11, 927–935 (1999).

    Article  CAS  Google Scholar 

  15. Coles, J.P. et al. Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes. Plant J. 17, 547–556 (1999).

    Article  CAS  Google Scholar 

  16. Digby, J. & Wareing, P.F. The effect of applied growth hormones on cambial division and the differentiation of the cambial derivatives. Ann. Bot. 30, 539–549 (1966).

    Article  CAS  Google Scholar 

  17. Wareing, F.B. Interaction between indole-acetic acid and gibberellic in cambial activity. Nature 181, 1744–1745 (1958).

    Article  CAS  Google Scholar 

  18. Ridoutt, B.G., Pharis, R.P. & Sands, R. Fiber length and gibberellins A1 and A20 are decreased in Eucalyptus globulus by acylcyclohexanedione injected into the stem. Physiol. Plant. 96, 559–566 (1996).

    Article  CAS  Google Scholar 

  19. Little, C.H.A. & Pharis, R.P. In Plant stems: physiology and functional morphology (ed. Gartner, B.L.) 281–319 (Academic Press, San Diego; 1995).

    Book  Google Scholar 

  20. Wang, Q., Little, C.H.A. & Odén, P.C. Effect of laterally applied gibberellin A(4/7) on cambial growth and the level of indole-3-acetic acid in Pinus sylvestris shoots. Physiol. Plant. 95, 187–194 (1995).

    Article  CAS  Google Scholar 

  21. Nilsson, O. et al. Spatial pattern of cauliflower mosaic virus 35S promoter-luciferase expression in transgenic hybrid aspen trees monitored by enzymatic assay and non-destructive imaging. Transgen. Res. 1, 209–220 (1992).

    Article  CAS  Google Scholar 

  22. Sachs, R.M. Stem elongation. Ann. Rev. Plant Physiol. 16, 73–96 (1965).

    Article  CAS  Google Scholar 

  23. Sauter, M., Mekhedov, S.L. & Kende, H. Gibberellin promotes histone H1 kinase activity and the expression of cdc2 and cyclin genes during the induction of rapid growth in deepwater rice internodes. Plant J. 7, 623–632 (1995).

    Article  CAS  Google Scholar 

  24. Sauter, M., Seagull, R.W. & Kende, H. Internodal elongation and orientation of celluose microfibrils and microtubles in deep-water rice. Planta 190, 354–362 (1993).

    Article  CAS  Google Scholar 

  25. Telewski, F.W., Aloni, A. & Sauter, J.J. In Biology of Populus and its implications for management and conservation, Vol. II (eds Stettler, R.F., Bradshaw, H.D., Heilman, P.E. & Hinckley, T.M.) 301–329 (NRC Research Press, Ottawa; 1996).

    Google Scholar 

  26. Ross, J.J., Murfet, I.C. & Reid, J.B. Distribution of gibberellins in Lathyrus odoratus L. and their role in leaf growth. Planta 102, 603–608 (1993).

    CAS  Google Scholar 

  27. Ross, J.J., Murfet, I.C. & Reid, J.B. Gibberellin mutants. Physiol. Plant. 100, 550–560 (1997).

    Article  CAS  Google Scholar 

  28. Tsuge, T., Tsukaya, H. & Uchimiya, H. Two independent and polarized processes of cell elongation regulate leaf blade expansion in Arabidopsis thaliana (L.) Heynh. Development 122, 1589–1600 (1996).

    CAS  PubMed  Google Scholar 

  29. Teng, Y.X. & Timmer, V.R. Growth and nutrition of hybrid poplar in response to phosphorus, zinc, and gibberellic-acid treatments. Forest Sci. 39, 252–259 (1993).

    Google Scholar 

  30. Kozlowski, T.T. & Pallardy, S.G. Growth control in woody plants (Academic Press, San Diego; 1997).

    Google Scholar 

  31. Smith, D.R. & Thorpe, T.A. Root initiation in cuttings of Pinus radiata seedlings. II. Growth regulator interactions. J. Exp. Bot. 26, 193–202 (1975).

    Article  CAS  Google Scholar 

  32. Vieira, J. & Messing, J. New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene 100, 189–194 (1991).

    Article  CAS  Google Scholar 

  33. Walden, R., Koncz, C. & Schell, J. The use of gene vectors in plant molecular biology. Methods Mol. Cell Biol. 1, 175–194 (1990).

    CAS  Google Scholar 

  34. Murashige, T. & Skoog, F. A revised medium for rapid growth and bio-assay with tobacco tissue cultures. Physiol. Plant. 15, 473–479 (1962).

    Article  CAS  Google Scholar 

  35. Regan, S., Bourquin, V., Tuominen, H. & Sundberg, B. Accurate and high resolution in situ hybridization analysis of gene expression in secondary stem tissues. Plant J. 19, 363–369 (1999).

    Article  CAS  Google Scholar 

  36. Chang, S., Puryear, J. & Cairney, J. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 11, 113–116 (1993).

    Article  CAS  Google Scholar 

  37. Sambrook, J., Fritsch, E. & Maniatis, T. Molecular cloning: a laboratory manual. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; 1989).

    Google Scholar 

  38. Sterky, F. et al. Gene discovery in the wood-forming tissues of poplar: analysis of 5,692 expressed sequence tags. Proc. Natl. Acad. Sci. USA 95, 13330–13335 (1998).

    Article  CAS  Google Scholar 

  39. Church, G.M. & Gilbert, W. Genomic sequencing. Proc. Natl. Acad. Sci. USA 81, 1991–1995 (1984).

    Article  CAS  Google Scholar 

  40. Peng, J.R., Richards, D.E., Moritz, T., CanoDelgado, A. & Harberd, N.P. Extragenic suppressors of the Arabidopsis gai mutation alter the dose–response relationship of diverse gibberellin responses. Plant Physiol. 119, 1199–1207 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to Peter Hedden for the pAt2301 construct, Göran Sandberg and Björn Sundberg for helpful discussions, and Ingabritt Carlsson, Leif Lund, and Marie Nygren for technical assistance. The Swedish Natural Science Research Council (NFR), The Swedish Research Council for Agriculture Sciences (SJFR), Foundation for Strategic Research (SSF), and Jakob Wallenberg-Lars Erik Thunholms Stiftelse are acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Moritz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eriksson, M., Israelsson, M., Olsson, O. et al. Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotechnol 18, 784–788 (2000). https://doi.org/10.1038/77355

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/77355

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing