Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Aerobic degradation of tetrachloroethylene by toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1

Abstract

Tetrachloroethylene (PCE) is thought to have no natural source, so it is one of the most difficult contaminants to degrade biologically. This common groundwater pollutant was thought completely nonbiodegradable in the presence of oxygen. Here we report that the wastewater bacterium Pseudomonas stutzeri OX1 degrades aerobically 0.56 μmol of 2.0 μmol PCE in 21 h (Vmax ≈ 2.5 nmol min−1 mg−1 protein and KM ≈ 34 μM). These results were corroborated by the generation of 0.48 μmol of the degradation product, chloride ions. This degradation was confirmed to be a result of expression of toluene-o-xylene monooxygenase (ToMO) by P. stutzeri OX1, since cloning and expressing this enzyme in Escherichia coli led to the aerobic degradation of 0.19 μmol of 2.0 μmol PCE and the generation of stoichiometric amounts of chloride. In addition, PCE induces formation of ToMO, which leads to its own degradation in P. stutzeri OX1. Degradation intermediates reduce the growth rate of this strain by 27%.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Westrick, J.J., Mello, J.W. & Thomas, R.F. The groundwater supply survey. J. Am. Water Works Assoc. 76, 52–59 (1984).

    Article  CAS  Google Scholar 

  2. Carter, S.R. & Jewell, W.J. Biotransformation of tetrachloroethylene by anaerobic attached-films at low temperatures. Water Res. 27, 607–615 (1993).

    Article  CAS  Google Scholar 

  3. Leung, S.W., Watts, R.J. & Miller, G.C. Degradation of perchloroethylene by Fenton's reagent: speciation and pathway. J. Environ. Qual. 21, 377–381 (1992).

    Article  CAS  Google Scholar 

  4. McCarty, P.L. Breathing with chlorinated solvents. Science 276, 1521–1522 (1997).

    Article  CAS  Google Scholar 

  5. Maymo-Gatell, X., Chien, Y.-T., Gossett, J.M. & Zinder, S.H. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276, 1568–1571 (1997).

    Article  CAS  Google Scholar 

  6. Ensley, B.D. Biochemical diversity of trichloroethylene metabolism. Annu. Rev. Microbiol. 45, 283–299 (1991).

    Article  CAS  Google Scholar 

  7. Fox, B.G., Borneman, J.G., Wackett, L.P. & Lipscomb, J.D. Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental implications. Biochem. 29, 6419–6427 (1990).

    Article  CAS  Google Scholar 

  8. Sharma, P.K. & McCarty, P.L. Isolation and characterization of a facultatively aerobic bacterium that reductively dehalogenates tetrachloroethene to cis-1,2-dichloroethene. Appl. Environ. Microbiol. 62, 761–765 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bradley, P.M. & Chapelle, F.H. Effect of contaminant concentration on aerobic microbial mineralization of DCE and VC in stream-bed sediments. Environ. Sci. Technol. 32, 553–557 (1998).

    Article  CAS  Google Scholar 

  10. Baggi, G., Barbieri, P., Galli, E. & Tollari, S. Isolation of a Pseudomonas stutzeri strain that degrades o-xylene. Appl. Environ. Microbiol. 53, 2129–2132 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bertoni, G., Bolognese, F., Galli, E. & Barbieri, P. Cloning of the genes for and characterization of the early stages of toluene and o-xylene catabolism in Pseudomonas stutzeri OX1. Appl. Environ. Microbiol. 62, 3704–3711 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chauhan, S., Barbieri, P. & Wood, T.K. Oxidation of trichloroethylene, 1,1-dichloroethylene, and chloroform by toluene/o-monooxygenase from Pseudomonas stutzeri OX1. Appl. Environ. Microbiol. 64, 3023–3024 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Shim, H. & Wood, T.K. Aerobic degradation of mixtures of chlorinated aliphatics by cloned tolune-o-xylene monooxygenase and tolune-o-monooxygenase in resting cells. Biotechnol. Bioeng., in press (2000).

  14. Bertoni, G., Martino, M., Galli, E. & Barbieri, P. Analysis of the gene cluster encoding toluene/o- xylene monooxygenase from Pseudomonas stutzeri OX1. Appl. Environ. Microbiol. 64, 3626–3632 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun, A.K. & Wood, T.K. Trichloroethylene degradation and mineralization by pseudomonads and Methylosinus trichosporium OB3b. App. Microbiol. Biotechnol. 45, 248–256 (1996).

    Article  CAS  Google Scholar 

  16. Nelson, M.J.K., Montgomery, S.O., Mahaffey, W.R. & Pritchard, P.H. Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway. Appl. Environ. Microbiol. 53, 949–954 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Van Hylckama Vlieg, J.E.T., de Koning, W. & Janssen, D.B. Transformation kinetics of chlorinated ethenes by Methylosinus trichosporium OB3b and detection of unstable epoxides by on-line gas chromatography. Appl. Environ. Microbiol. 62, 3304–3312 (1996).

    CAS  Google Scholar 

  18. Newman, L.M. & Wackett, L.P. Trichloroethylene oxidation by purified toluene 2-monooxygenase: products, kinetics, and turnover-dependent inactivation. J. Bacteriol. 179, 90–96 (1997).

    Article  CAS  Google Scholar 

  19. Mars, A.E., Houwing, J., Dolfing, J. & Janssen, D.B. Degradation of toluene and trichloroethylene by Burkholderia cepacia G4 in growth-limited fed-batch culture. Appl. Environ. Microbiol. 62, 886–891 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wackett, L.P. & Householder, S.R. Toxicity of trichloroethylene to Pseudomonas putida F1 is mediated by toluene dioxygenase. Appl. Environ. Microbiol. 55, 2723–2725 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Arenghi, F.L.G., Pinti, M., Galli, E. & Barbieri, P. Identification of the Pseudomonas stutzeri OX1 toluene-o-xylene monooxygenase regulatory gene (touR) and its cognate promoter. Appl. Environ. Microbiol. 65, 4057–4063 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. McClay, K., Streger, S.H. & Steffan, R.J. Induction of toluene oxidation activity in Pseudomonas mendocina KR1 and Pseudomonas sp. strain ENVPC5 by chlorinated Solvents and alkanes. Appl. Environ. Microbiol. 61, 3479–3481 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Heald, S. & Jenkins, R.O. Trichloroethylene removal and oxidation toxicity mediated by toluene dioxygenase of Pseudomonas putida. Appl. Environ. Microbiol. 60, 4634–4637 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Shingleton, J.T., Applegate, B.M., Nagel, A.C., Bienkowski, P.R. & Sayler, G.S. Induction of the tod operon by trichloroethylene in Pseudomonas putida TVA8. Appl. Environ. Microbiol. 64, 5049–5052 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Holliger, C., Schraa, G., Stams, A.J.M. & Zehnder, A.J.B. A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth. Appl. Environ. Microbiol. 59, 2991–2997 (1993).

  26. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular cloning, a laboratory manual. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; 1989).

    Google Scholar 

  27. Luu, P.P., Yung, C.W., Sun, A.K.-Y. & Wood, T.K. Monitoring trichloroethylene mineralization by Pseudomonas cepacia G4 PR1. Appl. Microbiol. Biotechnol. 44, 259–264 (1995).

    Article  CAS  Google Scholar 

  28. Bolognese, F., di Lecce, C., Galli, E. & Barbieri, P. Activation and inactivation of Pseudomonas stutzeri methylbenzene catabolism pathways mediated by a transposable element. Appl. Environ. Microbiol. 65, 1876–1882 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yee, D.C., Maynard, J.A. & Wood, T.K. Rhizoremediation of trichloroethylene by a recombinant, root-colonizing Pseudomonas fluorescens strain expressing toluene ortho-monooxygenase constitutively. Appl. Environ. Microbiol. 64, 112–118 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Shields, M.S., Reagin, M.J., Gerger, R.R., Campbell, R. & Somerville, C. TOM, a new aromatic degradative plasmid from Burkholderia (Pseudomonas) cepacia G4. Appl. Environ. Microbiol. 61, 1352–1356 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Mercer, J.W. & Cohen, R.M. A review of immiscible fluids in the subsurface: properties, models, characterization and remediation. J. Contam. Hydrol. 6, 107–163 (1990).

    Article  CAS  Google Scholar 

  32. Bergmann, J.G. & Sanik, J. Determination of trace amounts of chlorine in naptha. Anal. Chem. 29, 241–243 (1957).

    Article  CAS  Google Scholar 

  33. Phelps, P.A., Agarwal, S.K., Speitel, G.E. & Georgiou, G. Methylosinus trichosporium OB3b mutants having constitutive expression of soluble methane monooxygenase in the presence of high levels of copper. Appl. Environ. Microbiol. 58, 3701–3708 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the E. I. du Pont de Nemours and Company Educational Aid Program and the National Science Foundation (BES-9807146). We are grateful for the comments on the manuscript provided by Prof. Kenneth Reardon and Prof. Barth Smets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas K. Wood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryoo, D., Shim, H., Canada, K. et al. Aerobic degradation of tetrachloroethylene by toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1. Nat Biotechnol 18, 775–778 (2000). https://doi.org/10.1038/77344

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/77344

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing