Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Yeast surface display for screening combinatorial polypeptide libraries


Display on the yeast cell wall is well suited for engineering mammalian cell-surface and secreted proteins (e.g., antibodies, receptors, cytokines) that require endoplasmic reticulum-specif ic post-translational processing for efficient folding and activity. C-terminal fusion to the Aga2p mating adhesion receptor of Saccharomyces cerevisiae has been used for the selection of scFv antibody fragments with threefold decreased antigen dissociation rate from a randomly mutated library. A eukaryotic host should alleviate expression biases present in bacterially propagated combinatorial libraries. Quantitative flow cytometric analysis enables fine discrimination of kinetic parameters for protein binding to soluble ligands.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. Smith, G.R. 1985. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228: 1315–1317.

    CAS  Article  Google Scholar 

  2. Burton, D.R. 1993. Monoclonal antibodies from combinatorial libraries. Acc. Chem. Res. 26: 405–411.

    CAS  Article  Google Scholar 

  3. Winter, G., Griffiths, A.D., Hawkins, R.E., and Hoogenboom, H.R. 1994. Making antibodies by phage display technology. Annu. Rev. Immunol. 12: 433–455.

    CAS  Article  Google Scholar 

  4. Barbas, S.M. and Barbas, C.F. 1992. Filamentous phage display. Fibrinolysis 8: 245–252.

    Article  Google Scholar 

  5. Griffiths, A.D., et al. 1994. Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 13: 3245–3260.

    CAS  Article  Google Scholar 

  6. Griffiths, A.D., et al. 1993. Human anti-self antibodies with high specificity from phage display libraries. EMBO J. 12: 725–734.

    CAS  Article  Google Scholar 

  7. Schlom, J., et al. 1992. Therapeutic advantage of high-affinity anticarcinoma radioimmunoconjugates. Cancer Res. 52: 1067–1072.

    CAS  PubMed  Google Scholar 

  8. Schier, R., et al. 1996. Isolation of high-affinity monomeric human anti-c-enbB-2 single chain Fv using affinity-driven selection. J. Mol. Biol. 255: 28–43.

    CAS  Article  Google Scholar 

  9. Hawkins, R.E., Russell, S.J., and Winter, G. 1992. Selection of phage antibodies by binding affinity: mimicking affinity maturation. J. Md. Biol. 226: 889–896.

    CAS  Article  Google Scholar 

  10. Hawkins, R.E., Russell, S.J., Baier, M., and Winter, G. 1993. The contribution of contact and non-contact residues of antibody in the affinity of binding to antigen: the interaction of mutant D1.3 antibodies with lysozyme. J. Mol. Biol. 234: 958–964.

    CAS  Article  Google Scholar 

  11. Ulrich, H.D., Patten, P.A., Yang, P.L., Romesberg, F.E., and Schultz, P.G. 1995. Expression studies of catalytic antibodies. Proc. Natl. Acad. Sci. USA 92: 11907–11911.

    CAS  Article  Google Scholar 

  12. Vaughan, T.J., et al. 1996. Human antibodies with sub-nanomdar affinities isolated from a large non-immunized phage display library. Nature Biotechnology 14: 309–314.

    CAS  Article  Google Scholar 

  13. Deng, S.J., et al. 1995. Basis for selection of improved carbohydrate-binding single-chain antibodies from synthetic gene libraries. Proc. Natl. Acad. Sci. USA 92: 4992–4996.

    CAS  Article  Google Scholar 

  14. Hockney, R.C. 1994. Recent developments in heterologous protein production in Escherichia coli. Trends Biotechnol. 12: 456–463.

    CAS  Article  Google Scholar 

  15. Georgiou, G., Stathopoulos, C., Daugherty, P.S., Nayak, A.R., Iverson, B.L., and Curtiss, R. III. 1997. Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recom-binant vaccines. Nature Biotechnology 15: 29–34.

    CAS  Article  Google Scholar 

  16. Francisco, J.A., Campbell, R., Iverson, B.L., and Georgiou, G. 1993. Production and fluorescence-activated cell sorting of Escherichia coli expressing a functional antibody fragment on the external surface. Proc. Natl. Acad. Sci. USA 90: 10444–10448.

    CAS  Article  Google Scholar 

  17. Kretzschmar, T., Zimmerman, C., and Geiser, M. 1995. Selection procedures for nonmatured phage antibodies: a quantitative comparison and optimization strategies. Anal. Biochem. 224: 413–419.

    CAS  Article  Google Scholar 

  18. Phizicky, E.M. and Fields, S. 1995. Protein-protein interactions—methods for detection and analysis. Microbio. Rev. 59: 94–123.

    CAS  Google Scholar 

  19. Lu, C.-F, Montijn, R.C., Brown, J.L., Klis, F., Kurjan, J., Bussey, H., et al. 1995. Glycosyl phosphatidylinositol-dependent cross-linking of alpha-agglutinin and beta 1,6-glucan in the Saccfiaromyces cerevisiae cell wall. J. Cell Biol. 128: 333–340.

    CAS  Article  Google Scholar 

  20. Schreuder, M.P., Brekelmans, S., Van Den Ende, H., and Klis, F.M. 1993. Targeting of a heterologous protein to the cell wall of Saccharomyces cerevisiae. Yeast 9: 399–409.

    CAS  Article  Google Scholar 

  21. Schreuder, M.P., Mooren, A.T.A., Toschka, H.Y, Verrips, C.T., and Klis, F.M. 1996. Immobilizing proteins on the surface of yeast cells. Trends Biotechnol. 14: 115–120.

    CAS  Article  Google Scholar 

  22. Roy, A., Lu, C.F., Marykwas, D.L., Lipke, P.N., and Kurjan, J. 1991. Trie AGA1 product is involved in cell surface attachment of the Saccharomyces cerevisiae cell adhesion gly-coprotein a-agglutinin. Mol. Cell. Biol. 11: 4196–4206.

    CAS  Article  Google Scholar 

  23. Cappellaro, C., Baldermann, C., Rachel, R., and Tanner, W. 1994. Mating type-specific cell-cell recognition of Saccnaromyces cerevisiae: cell wall attachment and active sites of a- and α-agglutinin. EMBO J. 13: 4737–4744.

    CAS  Article  Google Scholar 

  24. Johnston, M. and Davis, R.W. 1984. Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4: 1440–1448.

    CAS  Article  Google Scholar 

  25. Low, N.M., Holliger, P., and Winter, G. 1996. Mimicking somatic hypermutation: affinity maturation of antibodies displayed on bacteriophage using a bacterial mutator strain. J. Mol. Biol. 260: 359–368.

    CAS  Article  Google Scholar 

  26. Parekh, R.N., Forrester, K.J., and Wittrup, K.D. 1995. Multicopy overexpression of bovine pancreatic trypsin inhibitor saturates the protein folding and secretory capacity of Saccftaromyees cerevisiae. Protein Expr. Purif. 6: 537–545.

    CAS  Article  Google Scholar 

  27. Gietz, R.D. and Sugino, A. 1988. New yeast-Eschericnia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74: 527–534.

    CAS  Article  Google Scholar 

  28. Gietz, R.D. and Schiestl, R.H. 1996. Transforming yeast with DNA. Methods in Molecular and Cellular Biology. 5: 255–269.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to K. Dane Wittrup.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Boder, E., Wittrup, K. Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15, 553–557 (1997).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing