αv Integrins as receptors for tumor targeting by circulating ligands

Article metrics

Abstract

Phage displaying an Arg-Gly-Asp (RGD)-containing peptide with a high affinity for αv integrins homed to tumors when injected intravenously into tumor-bearing mice. A substantially higher amount of αv-directed RGD phage than control phage was recovered from malignant melanomas and breast carcinoma. Antibodies detected the αv-directed RGD phage in tumor blood vessels, but not in several normal tissues. These results show that the αv integrins present in tumor blood vessels can bind circulating ligands and that RGD peptides selective for these integrins may be suitable tools in tumor targeting for diagnostic and therapeutic purposes.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Pauli, B.U., Augustin-Voss, H.G., El-Sabban, M.E., Johnson, R.C., and Hammer, D.A. 1990. Organ-preference of metastasis. The role of endothelial cell adhesion molecules. Cancer Metastasis Rev. 9: 175–189.

  2. 2

    Zetter, B.R. 1990. The cellular basis of site-specific tumor metastasis. N. Engl. J. Med. 322: 605–612.

  3. 3

    Springer, T.A. 1994. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76: 301–314.

  4. 4

    Butcher, E.C. and Picker, L.J. 1996. Lymphocyte homing and homeostasis. Science 272: 60–66.

  5. 5

    Goetz, D.J., El-Sabban, M.E., Hammer, D.A., and Pauli, B.U. 1996. Lu-ECAM-1-mediated adhesion of melanoma cells to endothelium under conditions of flow. Int. J. Cancer 65: 192–199.

  6. 6

    Pasqualini, R. and Ruoslahti, E. 1996. Organ targeting in vivo using phage display peptide libraries. Nature 380: 364–366.

  7. 7

    Baillie, C.T., Winslet, M.C., and Bradley, N.J. 1995. Tumour vasculature—a potential therapeutic target. Br. J. Cancer 72: 257–267.

  8. 8

    Burrows, F.J. and Thorpe, P.E. 1994. Vascular targeting—a new approach to the therapy of solid tumors. Pharmacol. Ther. 64: 155–174.

  9. 9

    Buckle, R. 1994. Vascular targeting and the inhibition of angiogenesis. Ann. Oncol. 4(suppl.): 45–50.

  10. 10

    Mustonen, T. and Alitalo, K. 1995. Endothelial receptor tyrosine kinases involved in angiogenesis. J. Cell Biol. 129: 895–898.

  11. 11

    Lappi, D.A. 1995. Tumor targeting through fibroblast growth factor receptors. Semin. Cancer Biol. 6: 279–288.

  12. 12

    Martiny-Baron, G. and Marme, D. 1995. VEGF-mediated tumor angiogenesis: a new target for cancer therapy. Curr. Opin. Biotechnol. 6: 675–680.

  13. 13

    Rettig, W.J., Garin-Chesa, P., Healey, J.H., Su, S.L., Jaffe, E.A., and Old, L.J. 1992. Identification of endosialin, a cell surface glycoprotein of vascular endothelial cells in human cancer. Proc. Natl. Acad. Sci. USA 89: 10832–10836.

  14. 14

    Brooks, P.C., Clark R.A., and Cheresh, D.A. 1994. Requirement of vascular integrin αvβ3 for angiogenesis. Science 264: 569–571.

  15. 15

    Friedlander, M., Brooks, P.C., Sharffer, R.W., Kincaid, C.M., Varner, J.A., and Cheresh, D.A. 1995. Definition of two angiogenic pathways by distinct αv integrins. Science 270: 1500–1502.

  16. 16

    Brooks, P.C., Montgomery, A.M., Rosenfeld, M., Reisfeld, R.A., Hu, T., Klier, G., et al. 1994. Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79: 1157–1164.

  17. 17

    Brooks, P.C., Stromblad S., Klemle R., Visscher D., Sarkar F.H., and Cheresh, D.A. 1995. Anti-integrin αvβ3 blocks human breast cancer growth and angiogenesis in human skin. J. Clin. Invest. 96: 1815–1822.

  18. 18

    Hammes, H.-P., Brownlee, M., Joonczyk, A., Sutter, A., and Preissner, K.T. 1996. Subcutaneous injection of a cyclic peptide antagonist of vitronectin receptor-type integrins inhibits retinal neovascularization. Nature. Med. 5: 529–533.

  19. 19

    Conforti, G., Dominguew-Jimenez, C., Zanetti, A., Gimbrone, M.A., Cremona, O., Marchisio, P.C., et al. 1992. Human endothelial cells express integrin receptors on the luminal aspect of their membrane. Blood 80: 437–446.

  20. 20

    Smith, G.P. and Scott, J.K. 1993. Libraries of peptides and proteins displayed in filamentous phage. Methods Enzymol. 21: 228–257.

  21. 21

    Ruoslahti, E. 1996. RGD and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol. 12: 697–715.

  22. 22

    Koivunen, E., Wang, B., and Ruoslahti, E. 1995. Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Bio/Technology 13: 265–270.

  23. 23

    Geter, M.R., Trigg, M.E., and Merril, C.R. 1973. Fate of bacteriophage lambda in non-immune germ-free mice. Nature 246: 221–223.

  24. 24

    Shockley, T.R., Lin, K., Nagy, J.A., Tompkins, R.G., Dvorak, H.F., and Yarmush, M.L 1991. Penetration of tumor tissue by antibodies and other immunoproteins. Ann. N.Y. Acad. Sci. 618: 367–382.

  25. 25

    Dvorak, H.F., Nagy, J.A., and Dvorak, A.M. 1991. Structure of solid tumors and their vasculature: implications for therapy with monoclonal antibodies. Cancer Cells 3: 77–85.

  26. 26

    Folkman, J. 1995. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med. 1: 27–31.

  27. 27

    Hanahan, D. and Folkman, J. 1996. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86: 353–364.

  28. 28

    Rak, J.W., St. Croix, B.D., and Kerbel, R.S. 1995. Consequences of angiogenesis for tumor progression, metastasis and cancer. Anticancer Drugs 6: 3–18.

  29. 29

    Price, J.E., Polyzos, A., Zhang, R.D., and Daniels, L.M. 1990. Tumorigenicity and metastasis of human breast carcinoma cell lines in nude mice. Cancer Res. 50: 717–721.

  30. 30

    Nicolson, G.L., Inoue, T., Van Pelt, C.S., and Cavanaugh, P.G. 1990. Differential expression of a Mr. approximately 90,000 cell surface transferrin receptor-related glycoprotein on murine B16 metastatic melanoma sublines selected for enhanced brain or ovary colonization. Cancer Res. 50: 515–520.

  31. 31

    Welch, D.R., Bisi, J.E., Miller, B.E., Conaway, D., Seftor, E.A., Yohem, K.H., et al. 1991. Characterization of a highly invasive and spontaneously metastatic human malignant melanoma cell line. Int. J. Cancer 47: 227–237.

  32. 32

    Montesano, R., Pepper, M.S., Möhle-Steinlein, U., Risau, W., Wagner, E.F., and Orci, L. 1990. Increased proteolytic activity is responsible for the aberrant morphogenetic behavior of endothelial cells expressing the middle T oncogene. Cell 62: 435–445.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading