Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Regeneration of transgenic cassava plants (Manihot esculenta Crantz) from microbombarded embryogenic suspension cultures

Abstract

A protocol was established for the introduction of DNA into embryogenic suspension-derived tissues of cassava via microparticle bombardment, for the selection of genetically transformed cells, and for the regeneration of fully transgenic plants from these cells. The plasmid DNA used for bombardment contained a gene encoding neomycin phosphotransferase (nptII) and a gene encoding ß-glucuronidase (uidA). Selection of bombarded tissue with paromomycin resulted in the establishment of putative transgenic embryogenic calli. In most of these calli, ß-glucuronidase was detected histochemically. Molecular analysis of paromomycin-resistant embryogenic calli and of plants regenerated from these calli, confirmed the stable integration of bombarded DNA into the cassava genome.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. FAO/GIEWS1994. Cassava. Food Outlook 10: 20–24.

  2. Cock, J.H. 1985. Cassava. New Potential for a Neglected Crop. Westview Press, Boulder, Colorado.

    Google Scholar 

  3. Roca, W.M. and Thro, A.M. 1993. Proceedings of the First International Scientific Meeting of the Cassava Biotechnology Network, Cartagena, Colombia, 25-28 August 1992. CIAT, Cali, Colombia, p. 496.

  4. Fauquet, C., Bogusz, D., Franche, C., Chavarriaga, P., Schöpke, C., and Beachy, R.N. 1992. Cassava viruses and genetic engineering, pp. 287–296 in Biotechnology: Enhancing Research on Tropical Crops in Africa. Thotthapilly, G., Monti, L., Mohan Raj, D.R., and Moore, A.W. (eds.), CTA/IITA co-publication. IITA, Ibadan, Nigeria.

    Google Scholar 

  5. Salehuzzaman, S.N.I.M., Jacobsen, E. and Visser, R.G.F. 1993. Isolation and characterization of a cDNA encoding granule-bound starch synthase in cassava (Manihot esculenta Crantz) and its antisense expression in potato. Plant Mol. Biol. 23: 947–962.

    Article  CAS  Google Scholar 

  6. Koch, B.M., Sibbesen, O., Swain, E., Kahn, R.A., Liangcheng, D., Bak, S., Halkier, B.A., and Møller, B.L. 1994. Possible use of a biotechnological approach to optimize and regulate the content and distribution of cyanogenic glucosides in cassava to increase food safety. In: Proceedings of the International Workshop on Cassava Safety, Ibadan, Nigeria, March 1–4 1994. Acta Horticult. 375: 45–60.

    Article  CAS  Google Scholar 

  7. Stamp, J.A. and Henshaw, G.G. 1982. Somatic embryogenesis in cassava. Z. Pflanzenphysiol. 105: 183–187.

    Article  Google Scholar 

  8. Calderón, A. 1988. Transformation of Manihot esculenta (cassava) using Agrobacterium tumefaciens and expression of the introduced foreign genes in transformed cell lines. MSc thesis, Vrije Universiteit Brussel, Belgium, p. 37.

  9. Schöpke, C., Franche, C., Bogusz, D., Chavarriaga, P., Fauquet, C., and Beachy, R.N. 1993. Transformation in cassava (Manihot esculenta Crantz), pp. 273–289 in Biotechnology in Agriculture and Forestry, Vol. 23: Plant Protoplasts and Genetic Engineering IV. Y.P.S. Bajaj (ed.). Springer Verlag, Berlin.

    Google Scholar 

  10. Schöpke, C., Chavarriaga, P., Mathews, H., Li, G.-G., Fauquet, C., and Beachy, R.N. 1993. Transformation of cassava (Manihot esculenta Crantz) somatic embryos using particle bombardment, p. 64A, in Abstracts Congress on Cell and Tissue Culture, San Diego, June 5–9, 1993. In Vitro Cell. Dev. Biol. 29A

    Google Scholar 

  11. Luong, H.T., Shewry, P.R. and Lazzeri, P.A. 1995. Transient gene expression in cassava somatic embryos by tissue electroporation. Plant Science 107: 105–115.

    Article  CAS  Google Scholar 

  12. Taylor, N.J., Edwards, M., Kiernan, R.J., Davey, C., Blakesley, D., and Henshaw, G.G. 1996. Development of friable embryogenic callus and embryogenic suspension cultures in cassava (Manihot esculenta Crantz). Nature Biotechnology 14: xxx–xxx.

    Google Scholar 

  13. Escandón, A.S. and Hahne, G. 1991. Genotype and composition of culture medium are factors important in the selection for transformed sunflower (Helianthus annuus) callus. Physiol. Plant. 81: 367–376.

    Article  Google Scholar 

  14. Torbert, K.A., Rines, H.W., and Somers, D.A. 1995. Use of paromomycin as a selective agent for oat transformation. Plant Cell Rep. 14: 635–640.

    Article  CAS  Google Scholar 

  15. Martin, T., Wöhner, R.-V., Hummel, S., Willmitzer, L., and Frommer, W.B. 1992. The GUS reporter system as a tool to study plant gene expression, pp. 23–43 in GUS Protocols. Gallagher, S.R. (ed.), Academic Press, San Diego, California

    Chapter  Google Scholar 

  16. Schenck, R.U. and Hildebrandt, A.C. 1972. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can. J. Bot. 50: 199–204.

    Article  Google Scholar 

  17. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol. Plant. 15: 473–497.

    Article  CAS  Google Scholar 

  18. Widholm, J.M. 1972. The use of fluorescein diacetate and phenosafranine for determining viability of cultured plant cells. Stain Technol. 47: 189–194.

    Article  CAS  Google Scholar 

  19. Kay, R., Chan, A., Daly, M., and McPherson, J. 1987. Duplication of the CaMV 35S promoter sequence creates a strong enhancer for plants. Science 236: 1299–1302.

    Article  CAS  Google Scholar 

  20. Chen, Z.L., Pan, N.S., and Beachy, R.N. 1988. A DNA sequence element that confers seed-specific enhancement to a constitutive promoter. EMBO J. 7: 297–302.

    Article  CAS  Google Scholar 

  21. Messing, J. 1983. New M13 vectors for cloning. Methods Enzymol. 101: 20–79.

    Article  CAS  Google Scholar 

  22. Horsch, R.B. and Klee, H.J. 1986. Rapid assay of foreign gene expression in leaf disks transformed by Agrobacterium tumefaciens: role of the T-DNA in the transfer process. Proc. Natl. Acad. Sci. USA 83: 4428–4432.

    Article  CAS  Google Scholar 

  23. Sivamani, E., Shen, P., Opalka, N., Beachy, R.N., and Fauquet, C.M. 1996. Selection of large quantities of embryogenic calli from Indica rice seeds for production of fertile transgenic plants using the biolistic method. Plant Cell Rep. 15: 322–327.

    Article  CAS  Google Scholar 

  24. Jefferson, R.A. 1987. Assaying chimeric genes in plants: the uidA gene fusion system. Plant Mol. Biol. Rep. 5: 387–405.

    Article  CAS  Google Scholar 

  25. Dellaporta, S.L., Wood, J., and Hicks, J.B. 1983. A plant DNA minipreparation: Version II. Plant Mol. Biol. Rep. 1: 19–21.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schöpke, C., Taylor, N., Cárcamo, R. et al. Regeneration of transgenic cassava plants (Manihot esculenta Crantz) from microbombarded embryogenic suspension cultures. Nat Biotechnol 14, 731–735 (1996). https://doi.org/10.1038/nbt0696-731

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0696-731

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing