Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Development of friable embryogenic callus and embryogenic suspension culture systems in cassava (Manihot esculenta Crantz)

Abstract

Procedures for the production of a new and highly prolific embryogenic culture system have been developed in cassava. The importance of the basal salts and type of auxin in controlling the development of cassava embryogenic tissues has been demonstrated, with culture on Gresshoff and Doy basal medium in the presence of 4-amino-3,5,6,trichloro-picolinic acid (picloram) inducing the formation of friable embryogenic callus from which highly totipotent embryogenic suspension cultures could be established. Plants have been regenerated from these cultures. The availability of embryogenic suspension cultures is considered to have important implications for the application of genetic transformation and other biotechnologies in the agronomic improvement of cassava.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lynam, J.H. 1993. Potential impact of biotechnology on cassava production in the Third World, pp. 22–30 in Proceedings of the First International Scientific Meeting of the Cassava Biothechnology Network, Cartegena, Colombia, 25-28 August 1992. Roca, W.M. and Thro, A.M. (eds.). Centra Internacional de Agricultura, Cali, Colombia.

    Google Scholar 

  2. Schöpke, C., Franche, C., Bogusz, D., Chavarriaga. P., Fauquet, C., and Beachy, R.N. 1993. Transformation in cassava (Manihot eculenta Crantz), pp. 273–289 in Biotechnology in Agriculture and Forestry, Vol 23. Plant Protoplasts and Genetic Engineering IV. Springer-Verlag, Berlin.

    Google Scholar 

  3. Fauquet, M. and Henshsaw, G.G. 1993. CBN Steering Committee Report, pp. 493–494 in Proceedings of the First International Scientific Meeting of the Cassava Biotechnology Network, Cartegena, Colombia, 25-28 August 1992. Roca, W.M. and Thro, A.M. (eds.). Centra Internacional de Agricultura, Cali, Colombia.

    Google Scholar 

  4. Stamp, J.A. and Henshaw, G.G. 1982. Somatic embryogenesis in cassava. Zeitschrift fur Planzenphysiologie 105: 183–187.

    Article  Google Scholar 

  5. Stamp, J.A. and Henshaw, G.G. 1987. Somatic embryogenesis from clonal leaf material of cassava. Ann. of Botany 59: 45–50.

    Article  Google Scholar 

  6. Stamp, J.A. and Henshaw, G.G. 1987. Secondary somatic embryogenesis and plant regeneration in cassava. Plant Cell Tissue and Organ Culture 10: 227–233.

    Article  CAS  Google Scholar 

  7. Szabados, L., Hoyos, R., and Roca W. 1987. In vitro somatic embryogenesis and plant regeneration of cassava. Plant Cell Reports 6: 248–251.

    Article  CAS  Google Scholar 

  8. Taylor, N.J. and Henshaw, G.G. 1993. The induction of somatic embryogenesis in fifteen African and one South American cassava cultivars, pp.134–139 in Proceedings of the First International Scientific Meeting of the Cassava Biotechnology Network. Cartegena, Colombia, 25-28 August 1992. Roca, W.M. and Thro, A.M. (eds.). Centra Internacional de Agricultura, Cali, Colombia.

    Google Scholar 

  9. Raemakers, C.J.J.M., Amati, M., Staritsky, G., Jacobsen, E., and Visser, R.G.F. 1993. Cyclic somatic embryogenesis and plant regeneration in cassava. Ann. of Botany 71: 289–294.

    Article  Google Scholar 

  10. Mathews, H., Schopke, C., Carcamo, R., Chavarriaga, P., Fauquet, C., and Beachy, R.N. 1993. Improvement of somatic embryogenesis and plant recovery in cassava. Plant Cell Reports 12: 328–333.

    Article  CAS  Google Scholar 

  11. Vasil, L. 1995. Cellular and molecular improvement of cereals, pp. 5–18 in Current Issues in Plant Molecular and Cellular Biology. Proceedings of the VIIIth Interantional Congress on Plant Tissue and Cell Culture, Florence, Italy, 12-17 June 1994. Terzi, M. et al (eds.). Kluwer Adacemic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  12. Christou, P. 1992. Genetic transformation of crop plants using microprojectile bombardment. The Plant Journal 2: 275–281.

    Article  CAS  Google Scholar 

  13. Vasil, I. and Vasil, V. 1992. Advances in cereal protoplast research. Physiol. Plant. 85: 279–283.

    Article  CAS  Google Scholar 

  14. Schöpke, C., Taylor, N., Carcamo, R., Konan, N.K., Marmey, P., Henshaw, G.G., Beachy, R.N., and Fauquet, C. 1996. Regeneration of transgenic cassava plants (Manihot esculenta Crantz) from microbombarded embryogenic suspension cultures. Nature Biotechnology 14: xxx–xxx.

    Article  Google Scholar 

  15. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol. Plant. 15: 473–497.

    Article  CAS  Google Scholar 

  16. Gresshoff, P. and Doy, C. 1974. Derivation of a haploid cell line from Vitis vinifera and the importance of the stage of meiotic development of anthers for haploid culture of this and other genera. Z. Pflanzenphysiol. 73: 132–141.

    Article  Google Scholar 

  17. Schenk, R. and Hildebrandt, A. 1972. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can. J. Bot. 50: 199–204.

    Article  CAS  Google Scholar 

  18. Hunold, R., Bronner, R., and Hahne, G. 1994. Early events in microprojectile bombardment: cell viability and particle location. The Plant Journal 5: 593–604.

    Article  CAS  Google Scholar 

  19. Smith, S. and Street, H. 1974. The decline of embryogenic potential as callus and suspension cultures of carrot are serially subcultured. Ann. of Botany 38: 223–241.

    Article  Google Scholar 

  20. Armstrong, C. and Green, C. 1985. Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline. Planta 164: 207–214.

    Article  CAS  Google Scholar 

  21. Novak, F., Afza. R., Van Duren, M., Perea-Dallos, M., Conger, B., and Tang Xiaolang. 1989. Somatic embryogenesis and plant regeneration in suspension cultures of dessert (AA and AAA) and cooking (ABB) bananas (Musa spp.). Bio/Technology 7: 154–156.

    Google Scholar 

  22. McWilliam, A., Smith, S., and Street, H. 1974. The origin and development of embryoids in suspension cultures of carrot (Dacus carota). Ann. of Botany 38: 243–250.

    Article  Google Scholar 

  23. Anthony, P., Davey, M., Power, J., and Lowe, K. 1995. An improved protocol for the culture of cassava leaf protoplasts. Plant Cell Tissue and Organ Culture 42: 299–302.

    Article  CAS  Google Scholar 

  24. Widholm, J. 1972. The use of fluorescein diacetate and phensafranine for determining viability of cultured plant cells. Stain Technol. 47: 189–194.

    Article  CAS  Google Scholar 

  25. Chu, C., Wang, C., Sun, C., Hsu, C., Yin, K., Chu, C., and Bi, F. 1975. Establishment of an efficient medium for anther culture of rice, through comparative experiments on nitrogen sources. Scientia Sinic. 18: 659–668.

    Google Scholar 

  26. Nitsch, J. and Nitsch, C. 1969. Haploid plants from pollen grains. Science 163: 85–87.

    Article  CAS  Google Scholar 

  27. Lloyd, G. and McCowan, B. 1981. Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot tip culture. Int. Prop. Soc. Proc. 30: 593–604.

    Google Scholar 

  28. Gamborg, O., Miller, R., and Ojima, K. 1968. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50: 151–158.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, N., Edwards, M., Kiernan, R. et al. Development of friable embryogenic callus and embryogenic suspension culture systems in cassava (Manihot esculenta Crantz). Nat Biotechnol 14, 726–730 (1996). https://doi.org/10.1038/nbt0696-726

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0696-726

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing