Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Improved Adenovirus Vector Provides Herpes Simplex Virus Ribonucleotide Reductase R1 and R2 Subunits Very Efficiently

Abstract

We have constructed a new adenovirus (Ad) expression vector, pAdBM5, that allows for the production of unprecedented levels of recombinant protein in the human 293 cell line using the Ad expression system. The main feature of this vector is a combination of enhancer sequences that increases the activity of the ectopic major late promoter (MLP) in recombinant Ad. In 293 cells infected with helper-free Ad recombinants generated with the pAdBM5 transfer vector, both herpes simplex virus (HSV) ribonucleotide reductase R1 and R2 subunits represent the most abundant polypeptides, accounting for as much as 15–20% of total cellular proteins. Our data suggest that this level of expression is probably very close to the upper limit of the system. Furthermore, when compared to the widely utilized baculovirus (Bac)/Sf9 expression system, the improved Ad vector showed a better performance for the production and purification of active HSV-2 ribonucleotide reductase R1 and R2 subunits. The R2 subunit was about 5-fold more abundant in recombinant Ad-infected 293 cells than in Bac-infected Sf9 cells while the R1 subunit was produced at roughly similar levels with either system. However, the amount of active soluble R1 obtained from recombinant Ad-infected 293 cells was at least 5 times higher because most of the R1 produced in Sf9 cells was insoluble.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Berkner, K.L. 1988. Development of Adenovirus vector for the expression of heterologous genes. BioTechniques 6: 616–629.

    CAS  PubMed  Google Scholar 

  2. Berkner, K.L. 1992. Expression of heterologous sequences in adenoviral vectors. Curr. Top. Microbiol. Immunol. 158: 39–66.

    CAS  PubMed  Google Scholar 

  3. Graham, F.L. and Prevec, L. 1992. Adenovirus-based expression vectors and recombinant vaccines, p. 363–390. In: Vaccines: New Approaches to Immunological Problems. R. W. Ellis (Ed.). Butterworth-Heinemann, Boston.

    Chapter  Google Scholar 

  4. Gerard, R.D. and Meidell, R.S. 1993. Adenovirus-mediated gene transfer. Trends Cardiovasc. Med. 5: 171–177.

    Article  Google Scholar 

  5. Ginsberg, H.S. (Ed.). 1984, The Adenoviruses. Plenum Publishing Corp., NY.

    Google Scholar 

  6. Tooze, J. 1981. Molecular Biology of Tumor Viruses, Second Edition, Part 2, DNA Tumor Viruses. Cold Spring Harbor Laboaratories, Cold Spring Harbor, NY.

    Google Scholar 

  7. Gluzman, Y., Reichl, H. and Solnick, D. 1982. Helper-free adenovirus type 5 vectors, p, 187–192. In: Eucaryotic Viral Vectors. Edited by Y. Gluzman (Ed.). Cold Spring Harbor Laboratory, NY.

    Google Scholar 

  8. Bett, A.J., Prevec, L. and Graham, F. 1993. Packaging capacity and stability of human adenovirus type 5 vectors. J. Virol. 67: 5911–5921.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Graham, F.L., Smiley, J.R., Russell, W.C. and Nairn, R. 1977. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36: 59–72.

    Article  CAS  PubMed  Google Scholar 

  10. Alkhatib, G. and Briedis, D.J. 1988. High-level eucaryotic in vivo expression of biologically active measles virus hemagglutinin using an adenovirus type 5 helper-free vector system. J. Virol. 62: 2718–2727.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Alkhatib, G., Massie, B. and Briedis, D.J. 1988. Expression of bicistronic measles virus P/CmRNA by using hybrid adenoviruses: levels of C protein synthesized in vivo are unaffected by the presence or absence of the upstream P initiator codon. J. Virol. 62: 4059–4069.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Alkatib, G., Richardson, C. and Shen, S.-H. 1990. Intracellular processing, glycosylation, and cell-surface expression of the measles virus fusion protein (F) encoded by a recombinant adenovirus. Virol. 175: 262–270.

    Article  Google Scholar 

  13. Davidson, D. and Hassell, J.A. 1987. Overproduction of polyoma-virus middle T antigen in mammalian cells through the use of an adenovirus vector. J. Virol. 61: 1226–1239.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Davis, A.R., Kostek, B., Mason, B.B., Hsiao, C.L., Morin, J., Kheer, S.K. and Hung, P.P. 1985. Expression of hepatitis B surface antigen with a recombinant adenovirus. Proc. Natl. Acad. Sci. USA 82: 7560–7564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang, A., Jacobi, G., Haj-Amed, Y. and Bacchetti, S. 1988. Expression of the HSV-2 ribonucleotide reductase subunits in adenovirus vectors or stably transformed cells: restoration of enzymatic activity by reassociation of enzyme subunits in the absence of other HSV proteins. Virol. 163: 462–470.

    Article  CAS  Google Scholar 

  16. Jacobs, S.C., Stephenson, J.R. and Wilkinson, G.W.G. 1992. High-level expression of the tick-borne encephalitis virus NS1 protein by using an adenovirus-based vector protection elicited in a murine model. J. Virol. 66: 20865–2095.

    Google Scholar 

  17. Johnson, D.C., Goutam, G.-C., Smiley, J.R., Fallis, L. and Graham, F. 1988. Abundant expression of herpes simplex virus glycoprotein gB using an adenovirus vector. Virol. 164: 1–14.

    Article  CAS  Google Scholar 

  18. Massie, B., Gluzman, Y. and Hassell, J.A. 1986. Construction of a helper-free recombinant adenovirus that expresses polyomavirus large T antigen. Mol. Cell. Biol. 6: 2872–2883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Smith, C.L., Hager, G.L., Pike, J.W. and Marx, S.J. 1991. Overexpression of toe human vitamin D3 receptor in mammalian cells using recombinant adenovirus vectors. Mol. Endocrinol. 5: 867–878.

    Article  CAS  PubMed  Google Scholar 

  20. Zhu, X., Young, C.S.H. and Silverstein, S. 1988. Adenovirus vector expressing functional herpes simplex virus ICPO. J. Virol. 62: 4544–4553.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Simanis, V. and Lane, D.P. 1985. An immunoaffinity purification procedure for SV40 large T antigen. Virol. 144: 88–100.

    Article  CAS  Google Scholar 

  22. Lamarche, M., Massie, B., Richer, M., Paradis, H. and Langelier, Y. 1990. High level expression in 293 cells of the herpes simplex virus type 2 ribonucleotide reductase subunit 2 using an adenovirus vector. J. Gen. Virol. 71: 1785–1792.

    Article  CAS  PubMed  Google Scholar 

  23. Alonso-Caplen, F.V., Katze, M.G. and Krug, R.M. 1988. Efficient transcription, not translation, is dependent on adenovirus tripartite leader sequences at late times of infection. J. Virol. 62: 1606–1616.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Berkner, K.L. and Sharp, P.A. 1985. Effect of the tripartite leader on synthes is of a non-viral protein in an adenovirus 5 recombinant. Nucl. Acids Res. 13: 841–857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Berkner, K.L., Schaffhausen, G.S., Roberts, T.M. and Sharp, P.A. 1987. Abundant expression of polyomavirus middle T antigen and dihydrofolate reductase in an adenovirus recombinant. J. Virol. 61: 1213–1220.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mason, B.B., Davis, A.R., Bhat, B.M., Chengalvala, M., Lubeck, M.D., Zandle, G., Kostek, B., Cholodofsky, S., Dheer, S., Molnar-Kimber, K., Mizutani, S. and Hung, P.P. 1990. Adenovirus vaccine vectors expressing hepatitis B surface antigen: importance of regulatory elements in the adenovirus major late intron. Virol. 177: 452–461.

    Article  CAS  Google Scholar 

  27. Mansour, S.L., Grodzicker, T. and Tjian, R. 1986. Downstream sequences affect transcription initiation from the adenovirus major late promoter. Mol. Cell. Biol 6: 2684–2694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Leong, K., Lee, W. and Berk, A.J. 1990. High-level transcription from the Adenovirus major late promoter requires downstream binding sites for late-phage specific factors. J. Virol. 64: 51–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mondésert, G. and Kedinger, C. 1991. Cooperation between upstream and downstream elements of the adenovirus major late promoter for maximal late phase-specific transcription. Nucl. Acids Res. 19: 3221–3228.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Berk, A.J. 1986. Adenovirus promoters and E1A transactivation. Ann. Rev. Genet. 20: 45–79.

    Article  CAS  PubMed  Google Scholar 

  31. Grinnell, B.W., Berg, D.T. and Walls, J. 1986. Activation of the adenovirus and BK late promoters: Effects of the BK virus enhancer and transacting viral early proteins. Mol. Cell. Biol. 6: 3596–3605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Paradis, H., Gaudreau, P., Massie, B., Lamarche, N., Guilbault, C., Gravel, S. and Langelier, Y. 1991. Affinity purification of active subunit 1 herpes simplex virus type 1 ribonucleotide reductase exhibiting a protein kinase activity. J. Biol. Chem. 266: 9647–9651.

    CAS  PubMed  Google Scholar 

  33. Atta, M., Lamarche, N., Battioni, J.P., Massie, B., Langelier, Y., Mansey, D. and Fontecave, M. 1993. Escherichia coli and herpes simplex virus ribonucleotide reductase R2 subunit: compared reactivities of redox centers. Biochem. J. 290: 897–810.

    Article  Google Scholar 

  34. Lamarche, N., Massie, B., Fontecave, M., Atta, M., Guilbault, C., Dumas, F.P. and Langelier, Y. 1994. Production of herpes simplex virus ribonucleotide reductase R2 subunit with prokaryotic and eukaryotic expression systems: Higher activity of R2 produced by eukaryotic cells related to tyrosyl free radical content. (Submitted).

  35. Garnier, A., Côté, J., Nadeau, I., Kamen, A. and Massie, B. 1994. Scale-up of the adenovirus expression system for the production of recombinant protein in human 293S cells. Cytotechnology 15: 145–155.

    Article  CAS  PubMed  Google Scholar 

  36. O'Reilly, K.R., Miller, L.K. and Luckow, V.A. 1992. Baculovints Expression Vectors, A Laboratory Manual. W. H. Freeman and Company, NY.

    Google Scholar 

  37. Caron, A.W., Archambault, J. and Massie, B. 1990. High-level recombinant protein production in bioreactors using the baculovirus-insect cell expression system. Biotechnol. Bioeng. 36: 1133–1140.

    Article  CAS  PubMed  Google Scholar 

  38. Caron, A.W., Tom, R.L., Kamen, A.A. and Massie, B. 1994. Baculovirus expression system scaleup by perfusion of high-density Sf-9 cultures. Biotechnol. Bioeng. 43: 881–891.

    Article  CAS  PubMed  Google Scholar 

  39. Lankinen, H., McLauchlan, J., Weir, M., Furlong, J., Conner, J., McGarrity, A., Mistry, A., Clements, J.B. and Marsden, H.S. 1991. Purification and characterization of the herpes simplex virus type 1 ribonucleotide reductase small subunit following expression in Escherichia coli. J. Gen. Virol. 72: 1383–1392.

    Article  CAS  PubMed  Google Scholar 

  40. Bucham, A.R. and Berg, P. 1988. Comparison of intron-dependent and intron independent gene expression. Mol. Cell. Biol. 8: 4395–1405.

    Article  Google Scholar 

  41. Zhao, Z., Bouchard, P., Diltz, C.D., Shen, S.-H. and Fischer, E.H. 1993. Purification and characterization of a protein tyrosine phosphatase containing SH2 domains. J. Biol. Chem. 268: 2816–2820.

    CAS  PubMed  Google Scholar 

  42. Lanford, R.E. 1988. Expression of SV-40 T antigen in insect cells using a baculovirus expression vector. Virol. 167: 72–81.

    Article  CAS  Google Scholar 

  43. Takeuchi-Suzuki, E., Tanaka, T., Hink, W.F. and King, M.M. 1992. High-level expression using baculovirus, purification, and characterization of a monomeric form of type 11 calmodulin-dependent protein kinase. Protein Expression Purif. 3: 160–164.

    Article  CAS  Google Scholar 

  44. Lanford, R.E., Luckow, V., Kennedy, R.C., Dreesman, G.R., Notvall, L. and Summers, M.D. 1989. Expression and characterization of Hepatitis B virus surface antigen polypeptides in insect cells with a baculovirus expression system. J. Virol. 63: 1549–1557.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Roy, P., Adachie, A., Urakawa, T., Booth, T.F. and Thomas, C.P. 1990. Identification of bluetongue virus VP6 protein as a nucleic acid-binding protein and the localization of VP6 in virus-infected vertebrate cells. J. Virol. 64: 1–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, J., Kalogerakis, N., Behie, L.A. and Latrou, K. 1993. A two-stage bioreactor system for the production of recombinant proteins using a genetically engineered baculovirus/insect cell system. Biotechnol. Bioeng. 42: 357–366.

    Article  CAS  PubMed  Google Scholar 

  47. Ellis, R.J. and van der Vies, S. 1991. Molecular chaperones. Ann. Rev. Biochem. 60: 321–347.

    Article  CAS  PubMed  Google Scholar 

  48. Gething, M.J. and Sambrook, J. 1992. Protein folding in the cell. Nature 355: 33–35.

    Article  CAS  PubMed  Google Scholar 

  49. Hendrick, J.P. and Hartl, F.U. 1993. Molecular chaperone functions of heat-shock proteins. Ann. Rev. Biochem. 62: 349–384.

    Article  CAS  PubMed  Google Scholar 

  50. Denis, D., Falgueyret, J.P., Riendeau, D. and Abramovitz, M. 1991. Characterization of the activity of purified recombinant human 5-lipoxygenase in the absence and presence of leukocyte factors. J. Biol. Chem. 266: 5072–5079.

    CAS  PubMed  Google Scholar 

  51. Berndt, N. and Cohen, P.T.W. 1990. Renaturation of protein phosphatase expressed at high levels in insect cells using a baculovirus vector. Eur. J. Biochem. 190: 291–297.

    Article  CAS  PubMed  Google Scholar 

  52. Alnemri, E.S. and Litwack, G. 1993. The steroid binding domain influences intracellular solubility of the baculovirus overexpressed glucocorticoid and mineralocorticoid receptors. Biochemistry 32: 5387–5393.

    Article  CAS  PubMed  Google Scholar 

  53. Aris, J.P., Basta, P.V., Holmes, W.D., Ballas, L.M., Moomaw, C., Rankl, N.B., Blomel, G., Loomis, C. and Bums, D.J. 1993. Molecular and biochemical characterization of a recombinant human PCK-δ family member. Biochim. Biophys. Acta 1174: 171–181.

    Article  CAS  PubMed  Google Scholar 

  54. van Drunen Littel-van den Hurk, S., Massie, B., Van den Hurk, J.V., Harland, R., Babiuk, L.A. and Zamb, T.J. 1993. Protection of cattle from BHV-1 infection by immunization with recombinant glycoprotein g1V. Vaccine 11: 25–35.

    Article  CAS  PubMed  Google Scholar 

  55. Rankl, N.B., Rice, J.W., Gurganus, T.M., Barbee, J.L. and Burns, D.J. 1994. The production of an active protein kinase C-δ in insect cells is greatly enhanced by the use of the basic protein promoter. Protein Expression and Purification 5: 346–356.

    Article  CAS  PubMed  Google Scholar 

  56. Sridhar, P., Panda, A., Pal, R., Talwar, G.P. and Hasnain, S.E. 1993. Temporal nature of the promoter and not relative strenght determines the expression of an extensively processed protein in a baculovirus system. FEBS Letts. 315: 282–286.

    Article  CAS  Google Scholar 

  57. Summers, M.D. and Smith, G.E. 1987. A Manual of Methods of Baculovirus Vectors and Insect Cell Culture Procedures. Texas Agricultural Experiment Station Research Bulletin no. 1555, Texas agricultural experiment Station, College Sation, TX, 1987.

  58. Seif, I., Koury, G. and Dhar, R. 1979. The genome of human papovavirus BKV. Cell 18: 963–977.

    Article  CAS  PubMed  Google Scholar 

  59. Kozak, M. 1987. At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. Mol. Biol. 196: 947–950.

    Article  CAS  Google Scholar 

  60. Richardson, C.D., Banville, M., Lalumière, M., Vialard, J. and Meighen, E.A. 1992. Bacterial luciferase produced with rapid-screening baculovirus vectors is a sensitive reporter for infection of insect cells and larvae. Intervirol. 34: 213–227.

    Article  CAS  Google Scholar 

  61. Cohen, E.A., Gaudreau, P., Brazeau, P. and Langelier, Y. 1986. Neutralization of herpes simplex virus ribonucleotide reductase activity by an oligopeptide-induced antiserum directed against subunit H2. J. Virol. 60: 1130–1133.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Vialard, J., Lalumière, M., Vernet, T., Briebis, D., Alkhaib, G., Henning, D., Levin, D. and Richardson, C.D. 1990. Synthesis of the membrane fusion and hemagglutinin proteins of measles virus, using a novel baculovirus vector containing the β-galactosidase gene. J. Virol. 64: 37–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Mann, G.J., Gräslund, A., Ochiai, E.-I., Ingemarson, R. and Thelander, L. 1991 Purification of recombinant mouse and herpes simplex virus ribonucleotide reductase R2 subunit. Biochemistry 30: 1939–1947.

    Article  CAS  PubMed  Google Scholar 

  64. Cohen, E.A., Charron, J., Perret, J. and Langelier, Y. 1985. Herpes simplex virus ribonucleotide reductase induced in infected BHK-21/C13 cells: biochemical evidence for the existence of two non-identical subunits, H1 and H2. J. Gen. Virol. 66: 733–745.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Massie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massie, B., Dionne, J., Lamarche, N. et al. Improved Adenovirus Vector Provides Herpes Simplex Virus Ribonucleotide Reductase R1 and R2 Subunits Very Efficiently. Nat Biotechnol 13, 602–608 (1995). https://doi.org/10.1038/nbt0695-602

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0695-602

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing