Whole-virus Vaccine Development by Continuous Culture on a Complementing Host

Abstract

We have evaluated an adaptive strategy for generating whole-virus vaccines using a bacteriophage model. Wildtype phage T7 was cultivated in a two-stage continuous stirred-tank reactor (CSTR) utilizing a recombinant E. coli host that constitutively expressed T7 RNA polymerase, an essential enzyme of the early viral metabolism. Over the course of 180 generations a diversity of phage variants emerged, outgrew the wildtype, and were subsequently eclipsed by yet fitter variants, based on host-ranges, restriction patterns, and one-step growth responses of isolated clones. The fittest variant, which required complementation by the recombinant host in order to grow, deleted at least 12 percent of its genome and replicated twice as fast as the wildtype. Moreover, this variant was immunogenically indistinguishable from the wildtype, based on cross-reactivities of antisera raised against both. These results suggest the feasibility of the proposed strategy for the development of safe whole-virus vaccines.

References

  1. 1

    Brock, T.D., 1990. The Emergence of Bacterial Genetics. Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory Press.

    Google Scholar 

  2. 2

    Cohen, S. 1949. Growth requirements of bacterial viruses. Bact. Rev. 13: 1–24.

    CAS  PubMed  Google Scholar 

  3. 3

    Hershey, A. and Chase, M. 1952. Independent functions of viral protein and nucleic acid in growth of bacteriophage. J. Gen. Physiol 36: 39–56.

    CAS  Article  Google Scholar 

  4. 4

    Benzer, S. 1961. On the topography of the genetic fine structure. Proc. Natl. Acad. Sci. USA 47: 403–415.

    CAS  Article  Google Scholar 

  5. 5

    Arber, W. 1965. Host-controlled modification of bacteriophage. Ann. Rev. Microbiol. 19: 365–378.

    CAS  Article  Google Scholar 

  6. 6

    Mills, D., Peterson, R. and Spiegelman, S. 1967. An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule. Proc. Natl. Acad. Sci. USA 58: 217–224.

    CAS  Article  Google Scholar 

  7. 7

    Domingo, E., Sabo, D., Taniguchi, T. and Weissmann, C. 1978. Nucleotide sequence heterogeneity of an RNA phage population. Cell 13: 735–744.

    CAS  Article  Google Scholar 

  8. 8

    Eigen, M. 1971. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58: 465–523.

    CAS  Article  Google Scholar 

  9. 9

    Eigen, M., McCaskill, J. and Schuster, P. 1988. Molecular quasi-species. J. Phys. Chem. 92: 6881–6891.

    CAS  Article  Google Scholar 

  10. 10

    Eigen, M. 1993. Viral quasispecies. Scientific American 269: 42–49.

    CAS  Article  Google Scholar 

  11. 11

    Domingo, E., Flavell, R.A. and Weissmann, C. 1976. In vitro site-directed mutagenesis: Generation and properties of an infectious extracistronic mutant of bacteriophage QB. Gene 1: 3–25.

    CAS  Article  Google Scholar 

  12. 12

    Ji, J. and Loeb, L. 1992. Fidelity of HIV-1 reverse transcriptase copying RNA in vitro. Biochemistry 31: 954–958.

    CAS  Article  Google Scholar 

  13. 13

    Goodenow, M., Huet, T., Saurin, W., Kwok, S., Sninsky, J. and Wain-Hobson, S. 1989. HIV-1 isolates are rapidly evolving quasispecies: evidence for viral mixtures and preferred nucleotide substitutions. >JAIDS 2: 344–352.

    CAS  Google Scholar 

  14. 14

    Rocha, E., Cox, N., Black, R., Harmon, M., Harrison, C. and Kendal, A. 1991. Antigenic and genetic variation in influenza A (H1N1) virus isolates recovered from a persistently infected immunodeficient child. J. Virology 65: 2340–2350.

    CAS  PubMed  Google Scholar 

  15. 15

    Martinez, M., Carrillo, C., Gonzalez-Candelas, F., Moya, A., Domingo, E. and Sobrino, F. 1991. Fitness alteration of foot-and-mouth disease virus mutants: measurement of adaptability of viral quasispecies. J. Virology 65: 3954–3957.

    CAS  PubMed  Google Scholar 

  16. 16

    Steinhauer, D., de la Torre, J., Meier, E. and Holland, J. 1989. Extreme heterogeneity in populations of vesicular stomatitis virus. J. Virology 63: 2072–2080.

    CAS  PubMed  Google Scholar 

  17. 17

    Holland, J. 1993. Replication error, quasispecies populations, and extreme evolution rates of RNA viruses. 203–218. In: Emerging Viruses. (Eds.?). New York, Oxford Univ. Press, Oxford, UK.

    Google Scholar 

  18. 18

    Buynak, E. and Hilleman, M. 1966. Live attenuated mumps virus vaccine. 1. Vaccine development. Proc. Soc. Exp. Biol. Med. 123: 768–775.

    CAS  Article  Google Scholar 

  19. 19

    Sassani, A., Mirchamsy, H., Shafyi, A., Ahourai, P., Razavi, J., Gholami, M., Mohammadi, A., Ezzij, A., Rahmani, M., Fateh, G. and Paravandi, T. 1991. Development of a new live attenuated mumps virus vaccine in human diploid cells. Biologicals: Journal of the International Association of Biological Standardization 19: 203–211.

    CAS  Article  Google Scholar 

  20. 20

    Schoepp, R., Beaty, B. and Eckels, K. 1991. Infection of Aedes albopictus and Aedes aegypti mosquitoes with dengue parent and progeny candidate vaccine viruses: a possible marker of human attenuation. Am. J. Trop. Med. Hyg. 45: 202–210.

    CAS  Article  Google Scholar 

  21. 21

    Cohen, J., Rosenblum, B., Feinstone, S., Ticehurst, J. and Purcell, R. 1989. Attenuation and cell culture adaptation of hepatitis A virus (HAV): a genetic analysis with HAV cDNA. J. Virol. 63: 5364–5370.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Kessler, M. and Aloni, Y. 1989. The block to transcription elongation at the SV40 attenuation site is decreased in vitro by oligomers complementary to segments of the attenuator RNA. Gene 84: 65–72.

    CAS  Article  Google Scholar 

  23. 23

    Luo, G., Bergmann, M., Garcia-Sastre, A. and Palese, P. 1992. Mechanism of attenuation of a chimeric influenza A/B transfectant virus. J. Virol. 66: 4679–4685.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Studier, F.W. and Dunn, J.J. 1983. Organization and expression of bacteriophage T7 DNA. Cold Spring Harbor Symp. Quant. Biol. 47: 999–1007.

    Article  Google Scholar 

  25. 25

    Yin, J. 1993. Evolution of bacteriophage T7 in a growing plaque. J. Bacteriol. 175: 1272–1277.

    CAS  Article  Google Scholar 

  26. 26

    Husimi, Y., Nishigaki, K., Kinoshita, Y. and Tanaka, T. Cellstat: a continuous culture system of a bacteriophage for the study of the mutation rate and selection process at the DNA level. Rev. Sci. Instruments 53: 517–522. 1982.

    CAS  Article  Google Scholar 

  27. 27

    Husimi, Y. 1989. Selection and evolution of bacteriophages in cellstat. Adv. Biophys. 25: 1–43.

    CAS  Article  Google Scholar 

  28. 28

    Adams, M. 1959. Bacteriophages. New York, Interscience Publishers.

    Google Scholar 

  29. 29

    Biebricher, C.K., Eigen, M., Gardiner, W.C., Husimi, Y., Keweloh, H.C. and Obst, A. 1987. Modeling studies of RNA replication and viral infection. 17–38. In: Complex Chemical Reaction Systems. Editors, J. Warnatz and W. Jager. Springer-Verlag, Berlin.

    Google Scholar 

  30. 30

    Rosenberg, A.H., Simon, M.N., Studier, F.W. and Roberts, R.J. 1979. Survey and mapping of restriction endonuclease cleavage sites in bacteriophage T7 DNA. J. Mol. Biol. 135: 907–915.

    CAS  Article  Google Scholar 

  31. 31

    Jones, N. and Shenk, T. 1979. Isolation of adenovirus type 5 host range deletion mutants defective for transformation of rat embryo cells. Cell 17: 683–689.

    CAS  Article  Google Scholar 

  32. 32

    Forrester, A., Farrell, H., Wilkinson, G., Kaye, J., Davis-Poynter, N. and Minson, T. 1992. Construction and properties of a mutant of herpes simplex virus type 1 with glycoprotein H coding sequences deleted. J. Virol. 66: 341–348.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Farrell, H., McLean, C., Harley, C., Efstathiou, S., Inglis, S. and Minson, A. 1994. Vaccine potential of a herpes simplex virus type 1 mutant with an essential glycoprotein deleted. J. Virol. 68: 927–932.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Desrosiers, R. 1992. HIV with multiple gene deletions as a live attenuated vaccine for AIDS. >AIDS Research and Human Retroviruses 8: 411–421.

    CAS  Article  Google Scholar 

  35. 35

    Daniel, M., Kirchhoff, F., Czajak, S., Sehgal, P. and Desrosiers, R. 1992. Protective effects of a live attenuated SIV vaccine with a deletion in the nef gene. Science 258: 1938–1941.

    CAS  Article  Google Scholar 

  36. 36

    Nowak, M.A. 1992. What is a quasispecies? Trends in Ecology and Evolution 7: 118–121.

    CAS  Article  Google Scholar 

  37. 37

    McKeating, J., Gow, J., Goudsmit, J., Pearl, L., Mulder, C. and Weiss, R. 1989. Characterization of HIV-1 neutralization escape mutants. AIDS 3: 777–784.

    CAS  Article  Google Scholar 

  38. 38

    Murphy, B.R. and Chanock, R.M. 1990. Immunization against viruses, p. 469–502. In: Virology. Editors-in-chief, B. N. Fields and D. M. Knipe. Raven Press, NY.

    Google Scholar 

  39. 39

    Studier, F.W. 1969. The genetics and physiology of bacteriophage T7. Virology 39: 562–574.

    CAS  Article  Google Scholar 

  40. 40

    Miller, J.H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor, Cold Spring Harbor Laboratory, NY.

    Google Scholar 

  41. 41

    Yin, J. 1991. A quantifiable phenotype of viral propagation.Biochemical and Biophysical Research Communications 174: 1009–1014.

    CAS  Article  Google Scholar 

  42. 42

    Studier, F.W. 1979. Relationships among different strains of T7 and among T7-related bacteriophages. Virology 95: 70–84.

    CAS  Article  Google Scholar 

  43. 43

    Studier, F.W. and Moffatt, B.A. 1986. Use of bacteriophage T7 RNA poly-merase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189: 113–130.

    CAS  Article  Google Scholar 

  44. 44

    Maniatis, T. 1982. Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory, NY.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to John Yin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kong, D., Yin, J. Whole-virus Vaccine Development by Continuous Culture on a Complementing Host. Nat Biotechnol 13, 583–586 (1995). https://doi.org/10.1038/nbt0695-583

Download citation

Further reading