Biomaterials in Tissue Engineering

Abstract

Biomaterials play a pivotal role in field of tissue engineering. Biomimetic synthetic polymers have been created to elicit specific cellular functions and to direct cell-cell interactions both in implants that are initially cell-free, which may serve as matrices to conduct tissue regeneration, and in implants to support cell transplantation. Biomimetic approaches have been based on polymers endowed with bioadhesive receptor-binding peptides and mono- and oligosaccharides. These materials have been patterned in two-and three-dimensions to generate model multicellular tissue architectures, and this approach may be useful in future efforts to generate complex organizations of multiple cell types. Natural polymers have also played an important role in these efforts, and recombinant polymers that combine the beneficial aspects of natural polymers with many of the desirable features of synthetic polymers have been designed and produced. Biomaterials have been employed to conduct and accelerate otherwise naturally occurring phenomena, such as tissue regeneration in wound healing in the otherwise healthy subject; to induce cellular responses that might not be normally present, such as healing in a diseased subject or the generation of a new vascular bed to receive a subsequent cell transplant; and to block natural phenomena, such as the immune rejection of cell transplants from other species or the transmission of growth factor signals that stimulate scar formation. This review introduces the biomaterials and describes their application in the engineering of new tissues and the manipulation of tissue responses.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Langer, R., and Vacanti, J.P. 1993. Tissue engineering. Science 260: 920–926.

    CAS  Article  Google Scholar 

  2. 2

    Peppas, N.A., and Langer, R. 1994. Challenges in biomaterials. Science 263: 1715–1720.

    CAS  PubMed  Google Scholar 

  3. 3

    Andrade, J.D., and Hlady, V. 1986. Protein adsorption and materials biocom-patibility: a tutorial review and suggested hypotheses. Adv. Polym. Sci. 79: 1–63.

    CAS  Google Scholar 

  4. 4

    Norde, W. 1994. Protein adsorption at solid surfaces: a thermodynamic approach. Pure Appl. Chem. 66: 491–496.

    CAS  Google Scholar 

  5. 5

    Buck, C., and Horwitz, A.F. 1987. Cell surface receptors for extracellular matrix molecules. Annu. Rev. Cell Biol. 3: 179–205.

    CAS  PubMed  Google Scholar 

  6. 6

    Singer, I.I., Kawka, D.W., Scott, S., Mumford, R.A., and Lark, M.W. 1987. The fibomectin cell attachment sequence Arg-Gly-Asp-Ser promotes folcal contact formation during early fibroblast attachment and spreading. J. Cell Biol. 104: 573–584.

    CAS  PubMed  Google Scholar 

  7. 7

    Juliano, R.L., and Haskill, S. 1993. Signal transduction from the extracellular matrix. J. Cell Biol. 120: 577–585.

    CAS  PubMed  Google Scholar 

  8. 8

    Singer, I.I., Scott, S., Kawka, D.W., Kazazis, D.M., Gailit, J., and Ruoslahti, E. 1988. Cell surface distribution of fibronectin and vitronectin receptors depends on substrate composition and extracellular matrix accumulation. J. Cell Biol. 106: 2171–2182.

    CAS  PubMed  Google Scholar 

  9. 9

    Mosher, D.F. 1993. Assembly of fibronectin into extracellular matrix. Curr. Opin. Struct. Biol. 3: 214–222.

    CAS  Google Scholar 

  10. 10

    Hynes, R.O. 1992. Integrins: versatility, modulation and signaling in cell adhesion. Cell 69: 11–25.

    CAS  Article  Google Scholar 

  11. 11

    Yamada, K.M. 1991. Adhesive recognition sequences. J. Biol. Chem. 266: 12809–12812.

    CAS  PubMed  Google Scholar 

  12. 12

    Humphries, M.J. 1990. The molecular basis and specificity of integrin-ligand interactions. J. Cell Sci. 97: 585–592.

    CAS  PubMed  Google Scholar 

  13. 13

    Graf, J., Ogle, R.C., Robey, F.A., Sasaki, M., Martin, G.R., Yamada, Y., and Kleinman, H.K. 1987. A pentapeptide from the laminin Bl chain that mediates cell adhesion and binds the 67000 laminin receptor. Biochemistry 26: 6896–6900.

    CAS  Google Scholar 

  14. 14

    Mecham, R.P. 1991. Laminin receptors. Annu. Rev. Cell Biol. 7: 71–91.

    CAS  PubMed  Google Scholar 

  15. 15

    Ruoslahti, E., and Pierschbacher, M. 1986. Tetrapeptides useful in surgery and therapeutic reconstruction and treatment of injuries. U.S. Patent 4,578,079.

    Google Scholar 

  16. 16

    Massia, S.P., and Hubbell, J.A. 1990. Covalently grafted ROD- and YIGSR-containing synthetic peptides support receptor-mediated adhesion of cultured fibroblasts. Anal. Biochem. 187: 292–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Massia, S.P., and Hubbell, J.A. 1991. An RGD spacing of 440 nm is sufficient for integrin αvβ3-mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation. J. Cell Biol. 114: 1089–1100.

    CAS  PubMed  Google Scholar 

  18. 18

    Massia, S.P., Rao, S.S., and Hubbell, J.A. 1993. Covalently immobilized laminin peptide Tyr-Ile-Gly-Ser-Arg (YIGSR) supports cell spreading and co-localization of the 67-kilodalton laminin receptor with ot-actinin and vinculin. J. Biol. Chem. 268: 8053–8059.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    DiMilla, P.A., Stone, J.A., Quinn, J.A., Albelda, S.M., and Lauffenberger, D.A. 1993. Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength. J. Cell Biol. 122: 729–737.

    CAS  PubMed  Google Scholar 

  20. 20

    Kygourakis, K., Bizioz, R., and Markenscoff, P. 1991. Proliferation of anchorage-dependent contact-inhibited cells, 1: development of theoretical models based on cellular automata. Biotechnol. Bioeng. 38: 459–470.

    Google Scholar 

  21. 21

    Zygourakis, K., Markenscoff, P., and Bizios, R. 1991. Proliferation of anchorage-dependent contact-inhibited cells, 2: experimental results and validation of the theoretical models. Biotechnol. Bioeng. 38: 471–479.

    CAS  PubMed  Google Scholar 

  22. 22

    Ward, M.D., and Hammer, D.A. 1993. A theoretical analysis for the effect of focal contact formation on cell-substrate attachment strength. Biophys. J. 64: 936–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Lin, H.-B., Zhao, Z.C., Garcia-Echeverria, C., Rich, D.H., and Cooper, S.L. 1992. Synthesis of a novel polyurethane copolymer containing covalently attached RGD peptide. J. Biomater. Sci., Polym. Ed. 3: 217–227.

    CAS  Google Scholar 

  24. 24

    Clapper, D.L., Kirkham, S.M., and Guire, P.E. 1994. ECM proteins coupled to device surfaces improve in vivo tissue integration. J. Cell. Biochem. Supplement 18C: 283.

    Google Scholar 

  25. 25

    Guire, P.E. 1993. Biocompatible device with calently bonded biocompati-ble agent. U.S. Patent 5: 263–992.

  26. 26

    Hubbell, J.A., Massia, S.P., Desai, N.P., and Drumheller, P.D. 1991. Endothelial cell-selective materials for tissue engineering in the vascular graft via a new receptor. Bio/Technology 9: 568–572.

    CAS  PubMed  Google Scholar 

  27. 27

    Massia, S.P., and Hubbell, J.A. 1992. Vascular endothelial cell adhesion and spreading promoted by the peptide REDV of the IIICS region of plasma fibronectin is mediated by integrin α4β1. J Biol. Chem. 267: 14019–14026.

    CAS  PubMed  Google Scholar 

  28. 28

    Chaikof, E.L., Merrill, E.W., Coleman, J.E., Ramberg, K., Connoll, R.J., and Callow, A.D. 1990. Platelet interactions with poly(ethylene oxide) networks. AIChE J. 36: 994–1001.

    CAS  Google Scholar 

  29. 29

    Drumheller, P.D., and Hubbell, J.A. 1994. Polymer networks with grafted cell adhesive peptides for highly biospecific cell adhesive substrates. Anal. Biochem. 222: 380–388.

    CAS  PubMed  Google Scholar 

  30. 30

    Jackson, R.L., Busch, S.J., and Cardin, A.D. 1991. Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes. Physiol. Rev. 71: 481–539.

    CAS  PubMed  Google Scholar 

  31. 31

    LeBaron, R.G., Esko, J.D., Woods, A., Johansson, S., and Hook, M. 1988. Adhesion of glycosaminoglycan-deficient Chinese hamster ovary cell mutants to fibronectin substrata. J. Cell Biol. 106: 945–952.

    CAS  PubMed  Google Scholar 

  32. 32

    Massia, S.P., and Hubbell, J.A. 1992. Immobilized amines and basic amino acids as mimetic heparin-binding domains for cell surface proteoglycan-medi-ated adhesion. J. Biol. Chem. 267: 10133–10141.

    CAS  PubMed  Google Scholar 

  33. 33

    Geffen, I., and Spiess, M. 1992. Asialoglycoprotein receptor. Int. Rev. Cytol. 1378: 181–219.

    Google Scholar 

  34. 34

    Gutsche, A.T., Parsons-Wingerter, P., Chand, D., Saltzman, W.M., and Leong, K.W. 1994. N-acetylglucosamine and adenosine derivatized surfaces for cell culture: 3T3 fibroblast and chicken hepatocyte response. Biotechnol. Bioeng. 43: 801–809.

    CAS  PubMed  Google Scholar 

  35. 35

    Kobayashi, K., Kobayashi, A., and Akaike, T. 1994. Culturing hepatocytes on lactose-carrying polystyrene layer via asialoglycoprotein receptor-mediated interactions. Meth. Enzymol. 247: 409–418.

    CAS  PubMed  Google Scholar 

  36. 36

    Kobayashi, A., Kobayashi, K., and Akaike, T. 1992. Control of adhesion and detachment of parenchymal liver cells using lactose-carrying polystyrene as substratum. J. Biomat. Sci, Polym. Ed. 3: 499–508.

    CAS  Google Scholar 

  37. 37

    Lasky, L.A. 1992. Selecting: interpreters of cell-specific carbohydrate infor-mation during inflammation. Science 258: 964–969.

    CAS  Google Scholar 

  38. 38

    Varki, A. 1994. Selectin ligands. Proc. Nat. Acad. Sci. USA 91: 7390–7397.

    CAS  PubMed  Google Scholar 

  39. 39

    Hatanaka, K., Ito, Y., Maruyama, A., Akaike, T., Ishio, K., and Uryo, T. 1993. Synthesis of a new polymer containing a blood-group antigenic oligosaccharide chain. Macromolecules 26: 1483–1486.

    CAS  Google Scholar 

  40. 40

    Vanderrest, M., and Garrone, R. 1991. Collagen family of proteins. FASEB J. 5: 2814–2823.

    CAS  Google Scholar 

  41. 41

    Parkhurst, M.R. and Saltzman, W.M. 1992. Quantification of human neu-trophil motility in 3-dimensional collagen gels: effect of collagen concentration. Biophys. J. 61: 306–315.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Krewson, C.E., Chung, S.W., Dai, W.G. and Saltzman, W.M. 1994. Cell aggregation and neurite growth in gels of extracellular matrix molecules. Biotechnol. Bioeng. 43: 555–562.

    CAS  PubMed  Google Scholar 

  43. 43

    Naeme, P.J. and Barry, F.P. 1993. The link proteins. Experimentia 49: 393–402.

    Google Scholar 

  44. 44

    Urman, B., Gomel, V. and Jetha, N. 1991. Effect of hyaluronic acid on postoperative intraperitoneal adhesion prevention in the rat model. Fertil. Steril. 56: 563–567.

    CAS  PubMed  Google Scholar 

  45. 45

    Sung, K.C. and Topp, E.M. 1994. Swelling properties of hyaluronic acid ester membranes. J. Membrane Sci. 92: 157–167.

    CAS  Google Scholar 

  46. 46

    Kvam, B.J., Atzori, M., Toffanin, R., Paoktti, S. and Biviano, F. 1992. 1H-NMR and 13C-NMR studies of solutions of hyaluronic acid esters and salts in methyl sulfoxide: comparison of hydrogen bond patterns and conformational behavior. Carbohyd. Res. 230: 1–13.

    CAS  Google Scholar 

  47. 47

    Krejchi, M.T., Atkins, E.D.T., Waddon, A.J., Fournier, M.J., Mason, T.L. and Tirrell, D.A. 1994. Chemical sequence control of beta-sheet assembly in macromolecular crystals of periodic polypeptides. Science 265: 1427–1432.

    CAS  PubMed  Google Scholar 

  48. 48

    Yoshikawa, E., Fournier, M.J., Mason, T.L. and Tirrell, D.A. 1994. Genetically engineered fluoropolymers: synthesis of repetitive polypeptides containing p-fluorophenylalanine residues. Macromolecules 27: 5471–5475.

    CAS  Google Scholar 

  49. 49

    Dessipri, E. and Tirrell, D.A. 1994. Trifluoroalanine N-carboxyanyhdride: a reactive intermediate for the synthesis of low surface energy polypeptides. Macromolecules 27: 5463–5470.

    CAS  Google Scholar 

  50. 50

    Cappello, J. 1992. Genetic production of synthetic protein polymers. MRS Bulletin 17: 48–53.

    CAS  Google Scholar 

  51. 51

    Putnam, D. and Cappello, J. 1993. Improving the growth of anchorage-dependent cells upon abrupt passage to serum-free media. Am. Biotechnol. Lab. 11: 14.

    CAS  PubMed  Google Scholar 

  52. 52

    Anderson, J.P., Cappello, J. and Martin, D.C. 1994. Morphology and primary crystal structure of a silk-like protein polymer synthesized by genetically engineered escherichia coli bacteria. Biopolymers 34: 1049–1058.

    CAS  PubMed  Google Scholar 

  53. 53

    Rosenbloom, J., Abrams, W.R. and Mecham, R. 1993. Extracellular matrix, 4: the elastic fiber. FASEB J. 7: 1208–1218.

    CAS  PubMed  Google Scholar 

  54. 54

    McPherson, D.T., Morrow, C., Minehan, D.S., Wu, J.G., Hunter, E. and Urry, D.W. 1992. Production and purification of a recorribinant elastomeric polypeptide G(VPGVG)19VPGV from Escherichia coli. Biotechnol. Progress 8: 347–352.

    CAS  Google Scholar 

  55. 55

    Urry, D.W. 1993. Molecular machines: how motion and other functions of living organisms can result from reversible chemical changes. Angew. Chem. Int. Ed. Engl. 32: 819–841.

    Google Scholar 

  56. 56

    Nicol, A., Gowda, D.C. and Urry, D.W. 1992. Cell adhesion and growth on synthetic elastomeric matrices containing Arg-Gly-Asp-Ser3 . J. Biomed. Mater. Res. 26: 393–413.

    CAS  PubMed  Google Scholar 

  57. 57

    Vert, M. and Li, S.M. 1992. Bioresorbability and biocompatibility of aliphatic polyesters. J. Mater. Sci. Mater. Med. 3: 432–446.

    CAS  Google Scholar 

  58. 58

    Hoffman, K.R. and Casey, D.J. 1985. Effect of carboxyl end groups on hydrolysis of polyglycolic acid. J. Polym. Sci, Polym. Chem. Ed. 23: 1939–1954.

    Google Scholar 

  59. 59

    Miller, R.A., Brady, J.M. and Cutright, D.E. 1977. Degradation rates of oral resorbable implants (polylactates and polyglycolates): rate modification with changes in PLA/PGA copolymer ratios. J. Biomed. Mater. Res. 11: 711–719.

    CAS  PubMed  Google Scholar 

  60. 60

    Pitt, C.G., Gratzl, M.M., Kimmel, G.L., Surles, J. and Schindler, A. 1981. Aliphatic polyesters, II: the degradation of poly(dl-lactide), poly(ε-caprolac-tone) and their copolymers in vivo. Biomaterials 2: 215–220.

    CAS  PubMed  Google Scholar 

  61. 61

    Dunn, R.L., Yewey, G.L., Duysen, E.D., Poison, E.M. and Southard, G.L. 1994. In situ forming of biodegradable polymeric implants for tissue regeneration. Abst. Am. Chem. Soc. 208: 247–POLY

    Google Scholar 

  62. 62

    Slepian, M.J., Campell, P.K., Berrigan, K., Roth, L., Massia, S.P., Weselcouch, E., Ron, E., Mathiowitz, E., Jacob, J., Chickering, D. and Philbrook, M. 1994. Biodegradable endoluminal polymer layers provide sustained transmural heparin delivery to the arterial wall in vivo. Circulation 90: 20.

    Google Scholar 

  63. 63

    Gombotz, W.R., Guanghui, W. and Hoffman, A.S. 1990. Protein adsorption to poly(ethylene oxide) surfaces. J. Appl. Polym. Sci. 37: 91–107.

    Google Scholar 

  64. 64

    Sawhney, A.S., Pathak, C.P. and Hubbell, J.A. 1993. Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(α-hydroxy acid) diacrylate macromers. Macromolecules 26: 581–587.

    CAS  Google Scholar 

  65. 65

    West, J.L. and Hubbell, J.A. 1995. Photopolymerized hydrogel materials for drug delivery applications. Reactive Polym. In press.

  66. 66

    Leach, R.E. and Henry, R.L. 1990. Reduction of postoperative adhesion in the rat uterine hom model with Poloxamer 407. Am. J. Obstet. Gynecol. 162: 1317–1319.

    CAS  PubMed  Google Scholar 

  67. 67

    Intveld, P.J.A., Shen, Z.R., Takens, G.A.J., Dijkstra, P.J. and Feijen, J. 1994. Glycine glycolic acid based copolymers. J. Polym. Sci. Polym. Chem. 32: 1063–1069.

    CAS  Google Scholar 

  68. 68

    Barrera, D.A., Zylstra, E., Lansbury, P.T. and Langer, R. 1995. Copolymerization and degradation of poly(lactic acid-colysine). Macromolecules 28: 425–432.

    CAS  Google Scholar 

  69. 69

    Barrera, D.A., Zylstra, E., Lansbury, P.T. and Langer, R. 1993. Synthesis and ROD peptide modification of a new biodegradable copolymer polyflactic acid-co-lysine). J. Am. Chem. Soc. 115: 11010–11011.

    CAS  Google Scholar 

  70. 70

    Kleinfeld, D., Kahler, K.H. and Hockberger, P.E. 1988. Controlled outgrowth of dissociated neurons on patterned substrates. J. Neurosci. 8: 4098–4120.

    CAS  PubMed  Google Scholar 

  71. 71

    Stenger, D.A., Gerger, J.H., Dulcey, C.S., Hickman, J.J., Rudolph, A.S., Nielsen, T.B., McCort, S.M. and Calvert, J.M. 1992. Coplanar molecular assemblies of aminoalkylsilane and perfluorinated alkylsilane: characterization and geometric definition of mammalian cell adhesion and growth. J. Am. Chem. Soc. 114: 8435–8442.

    CAS  Google Scholar 

  72. 72

    Bain, C.D. and Whitesides, G.M. 1989. Modeling organic surfaces with self-assembled monolayers. Angew. Chem. Int. Edn. Engl. 28: 506–512.

    Google Scholar 

  73. 73

    Folkers, J.P., Laibinis, P.E. and Whitesides, G.M. 1992. Self-assembled monolayers of alkanethiols on gold: comparisons of monolayers containing mixtures of short-chain and long-chain constituents with CH3 and CH2OH terminal groups. Langmuir 8: 1330–1341.

    CAS  Google Scholar 

  74. 74

    Prime, K.L. and Whitesides, G.M. 1993. Adsorption of proteins onto surfaces containing end-attached oligoiethylene oxide): a model system using self-assembled monolayers. J. Am. Chem. Soc. 115: 10714–10721.

    CAS  Google Scholar 

  75. 75

    Kamar, A., Biebuyck, H.A. and Whitesides, G.M. 1994. Patterning self-assembled monolayers: applications in materials science. Langmuir 10: 1498–1511.

    Google Scholar 

  76. 76

    Yannas, I.V. 1994. Applications of ECM analogs in surgery. J. Cell. Biochem. 56: 188–191.

    CAS  PubMed  Google Scholar 

  77. 77

    Yannas, I.V. 1990. Biologically active analogs of the extracellular matrix: artificial skin and nerves. Angew. Chem. Int. Ed. Engl. 29: 20–35.

    Google Scholar 

  78. 78

    Grinnell, F. 1994. Fibroblasts, myofibroblasts, and wound contraction. J. Cell Biol. 124: 401–404.

    CAS  PubMed  Google Scholar 

  79. 79

    Pettit, D.K., Hoffman, A.S. and Horbett, T.A. 1994. Correlation between corneal epithelial cell outgrowth and monoclonal antibody binding to the cell-binding domain of adsorbed fibronectin. J. Biomed. Mater. Res. 28: 685–691.

    CAS  PubMed  Google Scholar 

  80. 80

    Norde, W. and Favier, J.P. 1992. Structure of adsorbed and desorbed proteins. Coll. Surf. 64: 87–93.

    CAS  Google Scholar 

  81. 81

    Humphries, M.J., Akiyama, S.K., Komoriya, A., Olden, K. and Yamada, K.M. 1986. Identification of an alternatively spliced site in human plasma fibronectin that mediates cell type specific adhesion. J. Cell Biol. 103: 2637–2647.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Srnghvi, R., Kumar, A., Lopez, G.P., Stephanopoulos, G.N., Wang, D.I.C., Whitesides, G.M. and Ingber, D.E. 1994. Engineering cell shape and function. Science 264: 696–698.

    Google Scholar 

  83. 83

    Healy, K.E., Lorn, B. and Hockberger, P.E. 1994. Spatial distribution of mammalian cells dictated by material surface chemistry. Biotechnol. Bioeng. 43: 792–800.

    CAS  PubMed  Google Scholar 

  84. 84

    Ranieri, J.P., Bellamkonda, R., Jacob, J., Vargo, T.G., Gardella, J.A. and Aebischer, P. 1993. Selective neuronal cell attachment to a covalently patterned monoamine on fluorinated ethylene-propylene films. J. Biomed. Mater. Res. 27: 917–925.

    CAS  PubMed  Google Scholar 

  85. 85

    Ranieri, J.P., Bellamkonda, R., Bekos, E.J., Gardella, J.A., Mathieu, H.J., Ruiz, L. and Aebischer, P. 1994. Spatial control of neuronal cell attachment and differentiation on covalently patterned laminin oligopeptide substrates. Int. J. Develop. Neurosci. 12: 725–735.

    CAS  Google Scholar 

  86. 86

    Moghaddam, M.J. and Matsuda, T. 1993. Molecular design of 3-dimensional artificial extracellular matrix: photosensitive polymers containing cell adhesive peptide. J. Polym. Sci. Polym. Chem. 31: 1589–1597.

    CAS  Google Scholar 

  87. 87

    Bell, E., Rosenberg, M., Kemp, P., Gay, R., Green, G.D., Muthukumaran, N. and Note, C. 1991. Recipies for reconstituting skin. J. Biomech. Eng. Trans. ASME 113: 113–119.

    CAS  Google Scholar 

  88. 88

    Mikos, A.G., Bao, Y., Cima, L.G., Ingber, D.E., Vacant!, J.P. and Langer, R. 1993. Preparation of poly(glycoltc acid) bonded fiber structures for cell attachment and transplantation. J. Biomed. Mater. Res. 27: 183–189.

    CAS  PubMed  Google Scholar 

  89. 89

    Freed, L.E., Grande, D.A., Lingbin, Z., Emmanual, J., Marquis, J.C. and Langer, R. 1994. Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer scaffolds. J. Biomed. Mater. Res. 28: 891–899.

    CAS  PubMed  Google Scholar 

  90. 90

    Freed, L.E., Vunjaknovakovic, G., Biron, R.J., Eagles, D.B., Lesnoy, D.C., Barlow, S.K. and Langer, R. 1994. Biodegradable polymer scaffolds for tissue engineering. Bio/Technology 12: 689–693.

    CAS  PubMed  Google Scholar 

  91. 91

    Freed, L.E., Vunjaknovakovic, G., Emmanual, J. and Langer, R. 1994. Composition of cell-polymer cartilage implants. Biotechnol. Bioeng. 43: 605–614.

    CAS  PubMed  Google Scholar 

  92. 92

    Mooney, D.J., Organ, G., Vacanti, J.P. and Langer, R. 1994. Design and fabrication of biodegradable polymer devices to engineer tubular tissues. Cell Transplant. 3: 203–210.

    CAS  PubMed  Google Scholar 

  93. 93

    Wake, M.C., Patrick, C.W. and Mikos, A.G. 1994. Pore morphology effects on the fibrovascular tissue growth in porous polymer substrates. Cell Transplant. 3: 339–343.

    CAS  PubMed  Google Scholar 

  94. 94

    Johnson, L.B., Aiken, J., Mooney, D.J., Schloo, B.L., Griffith-Cima, L., Langer, R. and Vacanti, J.P. 1994. The mesentery as a lamininated vascular bed for hepatocyte transplantation. Cell Transplant. 3: 273–281.

    PubMed  Google Scholar 

  95. 95

    Mooney, D., Hansen, L., Vacanti, J., Langer, R., Farmer, S. and Ingber, D. 1992. Switching from differentiation to growth in hepatocytes: control by extracellular matrix. J. Cell. Physiol. 151: 497–505.

    CAS  PubMed  Google Scholar 

  96. 96

    Hansen, L.K., Mooney, D.J., Vacanti, J.P. and Ingber, D.E. 1994. Integral binding and cell spreading on extracellular matrix act at different points in the cell cycle to promote hepatocyte growth. Molec. Biol. Cell 5: 967–975.

    CAS  PubMed  Google Scholar 

  97. 97

    Dunn, J.C.Y., Thomkins, R.G. and Yarmush, M.L. 1992. Hepatocytes in collagen sandwich: evidence, for transcriptional and translational regulation. J. Cell Biol. 116: 1043–1053.

    CAS  PubMed  Google Scholar 

  98. 98

    Parsons- Wingerter, P.A. and Salteman, W.M. 1993. Growth versus function in the 3-dimensional culture of single and aggregated hepatocytes within collagen gels. Biotechol. Progr. 9: 600–607.

    CAS  Google Scholar 

  99. 99

    Dia, W.G., Belt, J. and Saltzman, W.M. 1994. Cell-binding peptides conjugated to poly(ethylene glycol) promote neural cell aggregation. Bio/Technology 12: 797–801.

    Google Scholar 

  100. 100

    Nyberg, S.L., Shirabe, K., Peshwa, M.V., Sielaff, T.D., Crotty, P.L., Mann, H.J., Remmel, R.P., Payne, W.D., Hu, W.S. and Cerra, F.B. 1993. Extracorporeal application of a gel entrapment, bioartificial liver: demonstration of drug metabolism and other biochemical functions. Cell Transplant. 2: 441–452.

    CAS  PubMed  Google Scholar 

  101. 101

    Spargo, B.J., Testoff, M.A., Nielsen, T.B., Stenger, D.A., Hickman, J.J. and Rudolph, A. 1994. Spatially controlled adhesion, spreading, and differentiation of endothelial cells on self-assembled molecular monolayers. Proc. Nat. Acad. Sci. USA 91: 11070–11074.

    CAS  PubMed  Google Scholar 

  102. 102

    Edelman, E.R., Mathiowitz, E., Langer, R. and Klagsbrun, M. 1991. Controlled and modulated release of basic fibroblast growth factor. Biomaterials 12: 619–626.

    CAS  PubMed  Google Scholar 

  103. 103

    Lee, S., Shea, M., Battle, M.A., Kazitza, K., Ron, E., Turek, T., Scarab, R.G. and Hayes, W.C. 1994. Healing of large segmental defects in rat femurs is aided by RHBMP-2 in PLGA. J. Biomed. Mater. Res. 28: 1149–1156.

    CAS  PubMed  Google Scholar 

  104. 104

    Guenard, V., Kleitman, N., Morrissey, T.K., Bunge, R.P. and Aebischer, P. 1992. Syngeneic Schwann cells derived from adult nerves seeded in semipermeable guidance channels enhance peripheral nerve regeneration. J. Neurosci. 12: 3310–3320.

    CAS  PubMed  Google Scholar 

  105. 105

    Williams, S.K., Rose, D.G. and Jarrell, B.E. 1994. Microvascalar endothelial cell sodding 6f ePTFB vascular grafts: improved patency and stability of the cellular lining. J. Biomed. Mater. Res. 28: 203–212.

    CAS  PubMed  Google Scholar 

  106. 106

    Lum, Z.P., Tai, I.T., Krestow, M., Norton, J., Vacek, I. and Sun, A.M. 1991. Prolonged reversal of diabetic state in NOD mice by xenografts of microencapsulated rat islets. Diabetes 40: 1511–1516.

    CAS  PubMed  Google Scholar 

  107. 107

    Soon-Shiong, P., Feldman, E., Nelson, R., Heintz, R., Yao, Q., Yao, Z.W., Zheng, T.L., Merideth, N., Skjakbraek, G., Espevik, T., Smidsrod, O. and Sandford, P. 1993. Long-term reversal of diabetes by the injection of immunoprotected islets. Proc. Nat. Acad. Sci. USA 98: 5843–5847.

    Google Scholar 

  108. 108

    Joseph, J.M., Goddard, M.B., Mills, J., Padrun, V., Zum, A., Zielinski, B., Favre, J., Gardaz, J.P., Mosimann, F., Sagen, J., Christenson, L. and Aebischer, P. 1994. Transplantation of encapsulated bovine chromaffin cells in the sheep subarachnoid space: a preclinical study for the treatment of cancer pain. Cell Transplant. 3: 355–364.

    CAS  PubMed  Google Scholar 

  109. 109

    Uludag, H., Horvath, V., Black, J.P. and Sefton, M.V. 1994. Viability and protein secretion from human hepatoma (HEPG2) cells encapsulated in 400 um polyacrylate microcapsules by submerged nozzle liquid extrusion. Biotechnol. Bioeng. 44: 1199–1204.

    CAS  PubMed  Google Scholar 

  110. 110

    Dionne, K.E., Colton, C.K. and Yarmush, M.L. 1993. Effect of hypoxia on insulin secretion by isolated rat and canine islets of Langerhans. Diabetes 42: 12–21.

    CAS  PubMed  Google Scholar 

  111. 111

    Sawhney, A.S., Pathak, C.P. and Hubbell, J.A. 1994. Modification of Islet of Langerhans surfaces with immunoprotective poly(ethylene glycol) coatings via interfacial photopolymerization. Biotechnol. Bioeng. 44: 383–386.

    CAS  PubMed  Google Scholar 

  112. 112

    Ferns, G.A.A., Raines, E.W., Sprugel, K.H., Motani, A.S., Reidy, M.A. and Ross, R. 1991. Inhibition of neointimal smooth muscle accumulation after angioplasty by an antibody to PDGF. Science 253: 1129–1132.

    CAS  Google Scholar 

  113. 113

    Hill-West, J.L., Chowdhury, S.M., Stopian, M.J. and Hubbell, J.A. 1994. Inhibition of thrombosis and intimal thickening by in situ photopolymerization of thin hydrogel barriers. Proc. Nat. Acad. Sci. USA 91: 5967–5971.

    CAS  PubMed  Google Scholar 

  114. 114

    Hill-West, J.L., Chowdhury, S.M., Sawhney, A.S., Pathak, C.P., Dunn, R.C. and Hubbell, J.A. 1994. Prevention of postoperative adhesions in the rat by in situ photopolymerization of bioresorbable hydrogel barriers. Obstet. Gynecol. 83: 59–64.

    CAS  PubMed  Google Scholar 

  115. 115

    Radzilowski, L.H. and Stupp, S.I. 1994. Nanophase separation in monodisperse rodcoil diblock polymers. Macromolecules 27: 7747–7753.

    CAS  Google Scholar 

  116. 116

    Messersmith, P.B. and Stupp, S.I. 1992. Synthesis of nanocomposites: organoceramics. J. Mater. Res. 7: 2599–2611.

    CAS  Google Scholar 

  117. 117

    Chen, G.H. and Hoffinan, A.S. 1995. Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature 393: 49–52.

    Google Scholar 

  118. 118

    Brauker, J., Martinson, L.A., Hill, R.S., Young, S.K., GirrbMiKW, V.E. and Johnson, R.C. 1992. Neovascularizatioo of immunoisolation membranes: the effect of architecture and encapsulation of tissue. Transplant. Proc. 24: 2924.

    CAS  PubMed  Google Scholar 

  119. 119

    Schmidt, J.A. and von Recum, A.F. 1992. Macrophage response to microtextured silicone. Biomaterials 13: 1059–1069.

    CAS  PubMed  Google Scholar 

  120. 120

    Green, A.M., Jansen, J.A., van der Waerden, J.P.C.M. and von Recum, A.F. 1994. Fibroblast response to microtextured silicone surfaces: texture orientation into or out of the Surface. J. Biomed. Mater. Res. 28: 647–653.

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hubbell, J. Biomaterials in Tissue Engineering. Nat Biotechnol 13, 565–576 (1995). https://doi.org/10.1038/nbt0695-565

Download citation

Further reading