Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Low-dimensional Chaos in Biological Systems


During the past five years general rules have been developed for the application of chaos theory to biology and medicine, which enable investigators to avoid the pitfalls that invalidated and trivialized many earlier results. The importance of biological chaos is that the variables governing the spatial and temporal geometries of the system may be few in number, fractional in dimension, and thus enable low-energy control with complex deterministic consequences. The complexity of control inherent in chaotic systems may be important in the dynamics of gene expression and translation. Extending these ideas may lead to completely novel ways to modulate protein production by introducing simple pulses at critical times or places.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Packard, N.H., Crutchfield, J.P., Farmer, J.D. and Shaw, R.S. 1980. Geometry from a time series. Physical Review Letters 45: 712–716.

    Article  Google Scholar 

  2. 2

    Takens, F. 1981. Detecting strange attractors in turbulance. Lecture Notes in Mathematics 898: 366–381.

    Article  Google Scholar 

  3. 2a

    Takens, F. 1985. On the numerical determination of the dimension of an attractor. Lecture Notes in Mathematics 1125: 99–106.

    Article  Google Scholar 

  4. 3

    Grassberger, P. and Procaccia, I. 1983. Characterization of strange attractors. Physical Review Letters 50(5): 346–349.

    Article  Google Scholar 

  5. 4

    Mandelbrot, B. 1982. Fractal Geometry of Nature. WH Freeman, San Francisco.

  6. 5

    Mühlnickel, W., Rendtorff, N., Kowalik, Z.J., Rockstroh, B., Miltner, W. and Elbert, T. 1994. Testing the determinism of EEG and MEG. Integrative Physiological and Behavioral Science 29: In press.

    Article  Google Scholar 

  7. 6

    Kaplan, D.T. and Glass, L. 1992. Direct test for determinism in a time series. Physical Review Letters 68: 427–430.

    CAS  Article  Google Scholar 

  8. 7

    Kowalik, Z.J. and Elbert, T. 1994. Changes of chaoticness in spontaneous EEG/MEG. Integrative Physiological and Behavioral Science 29: In press.

    CAS  Article  Google Scholar 

  9. 8

    Rapp, P.E. 1994. A guide to dynamical analysis. Integrative Physiological and Behavioral Science 29: In press.

    CAS  Article  Google Scholar 

  10. 9

    Theiler, J.T. 1986. Spurious dimension from correlation algorithms applied to limited time-series data. Physical Reviews 34: 2427–2432.

    CAS  Article  Google Scholar 

  11. 10

    Theiler, J., Eubank, S., Longtin, A., Galdrikian, B. and Farmer, J.D. 1992. Testing for nonlinearity in time series: the method of surrogate data. Physica 58: 77–94.

    Google Scholar 

  12. 11

    Schiff, S.J., Sauer, T. and Chang, T. 1994. Discriminating deterministic versus stochastic dynamics in neuronal activity. Integrative Physiological and Behavioral Science 29: In press.

    CAS  Article  Google Scholar 

  13. 12

    Skinner, J.E., Molnar, M. and Tomberg, C. 1994. The point correlation dimension: Performance with non-stationary surrogate data and noise. Integrative Physiological and Behavioral Science 29: In press.

    CAS  Article  Google Scholar 

  14. 13

    Freeman, W.J. 1975. Mass Action in the Nervous System. Academic Press, NY.

    Google Scholar 

  15. 14

    Freeman, W.J. 1987. Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Biol Cybernetics 56: 139–150.

    CAS  Article  Google Scholar 

  16. 15

    Mayer-Kress, G. 1994. Localized measures for non-stationary time-series of physiological data. Integrative Physiological and Behavioral Science 29: In press.

    CAS  Article  Google Scholar 

  17. 16

    Skinner, J.E., Pratt, C.M. and Vybiral, T.A. 1993. A reduction in the correlation dimension of heart beat intervals proceeds imminent ventricular fibrillation in human subjects. American Heart Journal 125: 731–743.

    CAS  Article  Google Scholar 

  18. 17

    Vybiral, T. and Skinner, J.E. 1993. The point correlation dimension of R-R intervals predicts sudden cardiac death among high risk patients, p. 257–260. In: IEEE Computer Society Press Proceedings: Computers in Cardiology. Los Alametos, CA.

    Google Scholar 

  19. 18

    Kleiger, R.E., Miller, J.P., Bigger, J.T., Moss, A.J. and the Multicenter Post-Infarction Research Group. 1988. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. American Heart Journal 59: 256–262.

    Article  Google Scholar 

  20. 19

    Lombardi, F., Sandorne, G., Pernpruner, S., Sala, R., Garimoldi, M., Cerutti, S., Baselli, G., Pagani, M. and Malliani, A. 1987. Heart rate variability as an index of sympathovagal interaction after acute myocardial infarction. American Journal of Cardiology 60: 1239–1245.

    CAS  Article  Google Scholar 

  21. 20

    Garfinkel, A., Spano, M.L., Ditto, W.L. and Weiss, J.N. 1992. Controlling cardiac chaos. Science 257: 1230–1235.

    CAS  Article  Google Scholar 

  22. 21

    Bergold, P.J., Sweatt, J.D., Winicov, I., Weiss, K.R., Kandel, E.R. and Schwartz, J.H. 1990. Protein synthesis during acquisition of long-term facilitation is needed for the persistent loss of regulatory subunits of the Aplysia cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 87: 3788–3791.

    CAS  Article  Google Scholar 

  23. 22

    Madison, D.V. 1993. Pass the nitric oxide. Proc. Natl. Acad. Sci. USA 90: 4329–4331.

    CAS  Article  Google Scholar 

  24. 23

    Mitra, M. and Skinner, J.E. 1992. Low-dimensional chaos maps learning in a model neuropil (olfactory bulb). Integrative Physiological and Behavioral Science 27: 305–322.

    Article  Google Scholar 

  25. 24

    Skarda, C.A. and Freeman, W.J. 1987. How brains make chaos in order to make sense of the world. Behavioral and Brain Sciences 10: 161–195.

    Article  Google Scholar 

  26. 25

    Barnsley, M.F., Massopust, P., Strickland, H. and Sloan, A.D. 1987. Fractal modeling of biological structures. Annals of New York Acad. Sci. 504: 179–194.

    CAS  Article  Google Scholar 

  27. 26

    Barnsley, M.F. and Sloan, A.D. 1987. Chaotic compression: a new twist on fractal theory speeds complex image transmission to video rates. Computer Graphics World Nov: 107–108.

    Google Scholar 

  28. 27

    Skinner, J.E., Carpeggiani, C., Landisman, C.E. and Fulton, K.W. 1991. The correlation-dimension of heart beat intervals is reduced in conscious pigs by myocardial ischemia. Circulation Research 68: 966–976.

    CAS  Article  Google Scholar 

  29. 28

    Skinner, J.E. 1994. Neurocardiology: How stress produces fatal cardiac arrhythmias. In: Arrhythmia: A Clinical Approach. P.J. Podrid and P.R. Kowey (Eds.). Williams & Wilkins, Baltimore, MD. In press.

    Google Scholar 

  30. 29

    Skinner, J.E., Lie, J.T. and Entman, M.L. 1975. Modification of ventricular fibrillation latency following coronary artery occlusion in the conscious pig: The effects of psychological stress and beta-adrenergic blockade. Circulation 51: 656–667.

    CAS  Article  Google Scholar 

  31. 30

    Peng, C.K., Buldyrev, S.V., Hausdorff, J.M., Havlin, S., Mietus, J.E., Simons, M., Stanley, H.E. and Goldberger, A.L. 1994. Instability as an indispensable characteristic of a healthy biological system. Integrative Physiological and Behavioral Science 29: In press.

    CAS  Article  Google Scholar 

  32. 31

    Goldberger, A.L., Rigney, D.R. and West, B.J. 1990. Chaos and fractals in human physiology. Sci. Amer. 262: 42–49.

    CAS  Article  Google Scholar 

  33. 32

    Rossler, O.E. and Rossler, R. 1994. Chaos in physiology. Integrative Physiological and Behavioral Science 29: In press.

    CAS  Article  Google Scholar 

  34. 33

    Elbert, T., Ray, W.J., Kowalik, Z.J., Skinner, J.E., Graf, K.E. and Birbaumer, N. 1994. Chaos and physiology. Physiological Reviews 74: 1–47.

    CAS  Article  Google Scholar 

  35. 34

    Wolf, S. 1994. Introducing chaos. Integrative Physiological and Behavioral Science 29: In press.

    Article  Google Scholar 

  36. 35

    Winfree, A.T. 1987. When Time Breaks Down. Princeton University Press, Princeton, NJ.

  37. 36

    Peng, C.K., Buldyrev, S.V., Goldberger, A.L., Havlin, S., Sciortino, F., Simons, M. and Stanley, H.E. 1992. Long-range correlations in nucleotide sequences. Nature 356: 168–170.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to James E. Skinner.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Skinner, J. Low-dimensional Chaos in Biological Systems. Nat Biotechnol 12, 596–600 (1994).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing