Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Cloning and Amplification of the Gene Encoding an Extracellular β-Glucosidase from Trichoderma reesei: Evidence for Improved Rates of Saccharification of Cellulosic Substrates

Abstract

We have cloned and determined the nucleotide sequence of the gene encoding an extracellular β-glucosidase (bgl1) from the cellulolytic fungus Trichoderma reesei. The predicted open reading frame of the bgl1 gene is interrupted by two putative introns of 70 and 64 bp and encodes a protein with a calculated molecular weight of 75,341. The genomic segment encoding bgl1 was cloned into a vector that contained the selectable marker gene, amdS. Transformation of T. reesei with this vector resulted in several stable transformant strains al1 possessing an increased copy number of the bgl1 gene integrated into the genome together with elevated rates of glucose production from avicel. One transformant produced an extracellular cellulase with a five-fold increase in the rate of production of glucose from cellobiose, a 33% rate increase from avicel, and a 17% increase from phosphoric acid swollen cellulose. These data suggest that the cellulolytic activity of T. reesei strains may be specifically improved by transformation with cloned cellulase genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shoemaker, S., Schweickart, V., Ladner, M., Gelfand, D., Kwok, S., Myambo, K. and Innis, M. 1983. Molecular cloning of exo-cellobiohydrolase I derived from Trichoderma reesei strain L27. Bio/Technology 1: 691–696.

    CAS  Google Scholar 

  2. Chen, M.C., Gritzali, M. and Stafford, W.D. 1987. Nucleotide sequence and deduced primary structure of cellobiohydrolase II from Trichoderma reesei. Bio/Technology 5: 274–278.

    Article  CAS  Google Scholar 

  3. Teeri, T.T., Lehtovaara, P., Kauppinen, S., Salovuori, I. and Knowles, J. 1987. Homologous domains in Trichoderma reesei cellulolytic enzymes: gene sequence and expression cellobiohydrolase II. Gene 51: 43–52.

    Article  CAS  Google Scholar 

  4. Penttila, M., Lehtovaara, P., Nevalainen, H., Bhikhabhai, R. and Knowles, J.K.C. 1986. Homology between cellulase genes of Trichoderma reesei: complete nucleotidc sequence of the endogluconase I gene. Gene 45: 253–263.

    Article  CAS  Google Scholar 

  5. Saloheimo, M., Lehtovaara, P., Penttila, M., Teeri, T.T., Stahlberg, J., Pettersson, G., Claeyssens, M., Tomme, P. and Knowles, J.K.C. 1988. EGIII, a new endoglucanase From Trichoderma reesei: the characterization of both gene and enzyme. Gene 63: 11–21.

    Article  CAS  Google Scholar 

  6. Enari, T.M., Niku-Paavola, M.L., Harju, L., Lappalainen, A. and Nummi, M. 1981. Purification of Trichoderma reesei and Aspergillus niger β-glucosidase. J. Appl. Biochem. 3: 157–163.

    CAS  Google Scholar 

  7. Umile, C. and Kubicek, C.P. 1986. A constitutive, plasma membrane bound β-glucosidase in Trichoderma reesei. FEMS Microbiol. Letts. 34: 291–295.

    CAS  Google Scholar 

  8. Jackson, M.A. and Talburt, D.E. 1988. Purification and partial characterization of an extracellular β-glucosidase of Trichoderma reesei using cathodic run, polyacrylamide gel electrophoresis. Biotechnol. Bioeng. 32: 903–909.

    Article  CAS  Google Scholar 

  9. Hofer, F., Weissinger, E., Mischak, H., Messner, R., Meixner-Monori, B., Blaas, D., Visser, J. and Kubicek, C.P. 1989. A monoclonal antibody against the alkaline extracellular β-glucosidase from Trichoderma reesei: reactivity with other Trichoderma β-glucosidases. Biochim. Biophys. Acta. 992: 298–306.

    Article  CAS  Google Scholar 

  10. Messner, R. and Kubicek, C.P. 1990. Evidence for a single, specific β-glucosidase in cell walls from Trichoderma reesei QM9414. Enzyme Microb. Technol. 12: 685–690.

    Article  CAS  Google Scholar 

  11. Inglin, M., Feinberg, B.A. and Loewenberg, J.R. 1980. Partial purification and characterization of a new intraccllular β-glucosidase of Trichoderma reesei. Biochem. J. 185: 515–519.

    Article  CAS  Google Scholar 

  12. Kubicek, C.P. 1981. Release of carboxymethyl-cellulase and β-glucosidase from cell walls of Trichoderma reesei. Eur. J. Appl. Biotechnol. 13: 226–231.

    Article  CAS  Google Scholar 

  13. Messner, R., Hagspiel, K. and Kubicek, C.P. 1990. Isolation of a β-glucosidase binding and activating polysaccharide from cell walls of Trichoderma reesei. Arch. Microbiol. 154: 150–155.

    Article  CAS  Google Scholar 

  14. Sternberg, D., Vijayakumar, P. and Reese, E.T. 1977. β-glucosidase: microbial production and effect on enzymatic hydrolysis of cellulose. Can. J. Microbiol. 23: 139–147.

    Article  CAS  Google Scholar 

  15. Kadam, S.K. and Demain, A.L. 1989. Addition of cloned β-glucosidase enhances the degradation of crystaline cellulose by the Clostridium thermocellum cellulase complex. Biochem. Biophys. Res. Comm. 161: 706–711.

    Article  CAS  Google Scholar 

  16. Kowamori, M., Ado, Y. and Takasawa, S. 1986. Preparation and application of Trichoderma reesei mutants with enhanced β-glucosidase. Agr. Biol. Chem. 50: 2477–2482.

    Google Scholar 

  17. Mandels, M., Parrish, F.W. and Reese, E.T. 1962. Sophorose as an inducer of cellulase in Trichoderma viride. J. Bacteriol. 83: 400–408.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Perlman, E. and Halvorson, H. 1983. A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. J. Mol. Bio. 167: 391–409.

    Article  CAS  Google Scholar 

  19. Von Heijne, G. 1984. How signal sequences maintain cleavage specificity. J. Mol. Biol. 173: 243–251.

    Article  CAS  Google Scholar 

  20. Von Heijne, G. 1986. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 14: 4683–4690.

    Article  CAS  Google Scholar 

  21. Gavel, Y. and Heijne Von, G. 1990. Sequence differences between glycosylaled and nonglycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Protein Engineering 3: 433–442.

    Article  CAS  Google Scholar 

  22. Gurr, S.J., Unkles, S.E. and Kinghorn, J.R. 1987. The structure and organization of nuclear genes of filamentous fungi, p. 93–139. In: Gene Structure in Eukaryotic Microbes. Kinghorn, J. R. (Ed.). IRL Press, Boca Raton, FL.

    Google Scholar 

  23. Smith, J.L., Bayliss, F.T. and Ward, M. 1991. Sequence of the cloned pyr4 gene of Trichoderma reesei and its use as a homologous selectable marker for transformation. Cur. Genet. 19: 27–33.

    Article  CAS  Google Scholar 

  24. Chirico, W.J. and Brown, R.D. Jr. 1987. Purification and characterization of a β-glucosidase from Trichoderma reesei. Eur. J. Biochem. 165: 333–341.

    Article  CAS  Google Scholar 

  25. Bause, E. and Legler, G. 1980. Isolation and structure of a tryptic glycopeptide from the active site of β-glucosidase A3 from Aspergillus wentii. Biochim. Biophys. Acta. 626: 459–465.

    Article  CAS  Google Scholar 

  26. Paice, M.G. and Jurasek, L. 1979. Structural and mechanistic comparisons of some β-l,4-glycoside hydrolases. Adv. Chem. Ser. 181: 361–374.

    Article  Google Scholar 

  27. Clarke, A.J. 1990. Chemical modification of a β-glucosidase from Schizophyllum commune: evidence for essential carboxyl groups. Biochim. Biophys. Acta. 1040: 145–152.

    Article  CAS  Google Scholar 

  28. Boel, E., Hjort, I., Svensson, B., Norris, K.E. and Fiil, N.P. 1984. Glucoamylases G1 and G2 from Aspergillus niger are synthesized from two different but closely related mRNAs. EMBO. J. 3: 1097–1102.

    Article  CAS  Google Scholar 

  29. Boel, E., Hansen, M.T., Hjort, I., Hoegh, I. and Fiil, N.P. 1984. Two different types of intervening sequences in the glucoamylase gene from Aspergillus niger. EMBO. J. 3: 1581–1585.

    Article  CAS  Google Scholar 

  30. Finklestein, D.B., Rambosek, J., Crawford, M.S., Soliday, C.L., McAda, P.C. and Leach, J. 1989. Protein secretion in Aspergillus niger, p. 259–300. In: Genetics and Molecular Biology of Industrial Microorganisms; Queener, S. W. and Hegeman, G. (Eds). ASM Publications, Washington, D.C.

    Google Scholar 

  31. Sheir-Neiss, G. and Montenecourt, B.S. 1984. Characterization of the secreted cellulases of Trichoderma reesei wild type mutants during controlled fermentations. Appl. Microbiol. Biotechnol. 20: 46–53.

    Article  CAS  Google Scholar 

  32. Gritzali, M. 1977. Biosynthesis and identification of enzymes of the cellulase system of Trichoderma reesei. Masters Thesis. Virginia Polytechnic Institute and State University.

    Google Scholar 

  33. Mandels, M. and Weber, J. 1969. Production of cellulases. Adv. Chem. Ser. 95: 391–413.

    Article  CAS  Google Scholar 

  34. Messing, H., Crea, R. and Seeburg, P.H. 1981. A system for shotgun DNA sequencing. Nucleic Acids Res. 9: 309–321.

    Article  CAS  Google Scholar 

  35. Yanisch-Perron, C., Vieira, J. and Messing, J. 1985. Improved M 13 phage gene cloning vectors and host strains: Nucleotide sequences of the M 13mpl8 and pUC19 vectors. Gene 33: 103–119.

    Article  CAS  Google Scholar 

  36. Korman, D.R., Bayliss, F.T., Barnett, C.C., Carmona, C.L., Kodama, K.H., Royer, T.J., Thompson, S.A., Ward, M., Wilson, L.J. and Berka, R.M. 1990. Cloning, characterization, and expression of two alpha-amylase genes from Aspergillus niger var. awamori. Curr. Genet. 17: 203–221.

    Article  CAS  Google Scholar 

  37. Timberlake, W.E. and Barnard, E.C. 1981. Organization of a gene cluster expressed specifically in the asexual spores of A. nidulans. Cell 26: 29–37.

    Article  CAS  Google Scholar 

  38. Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning. A Laboratory Manual, Second Edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  39. Thomas, P.S. 1980. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc. Nat. Acad. Sci. USA 77: 5201–5205.

    Article  CAS  Google Scholar 

  40. Sanger, F., Nicklen, S. and Coulson, A.R. 1977. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.

    Article  CAS  Google Scholar 

  41. Ohmiya, K., Takano, M. and Shimizu, S. 1990. DNA sequence of a β-glucosidase from Ruminoccocus albus. Nucleic Acids Res. 18: 671.

    Article  CAS  Google Scholar 

  42. Raynal, A., Gerbaud, C., Francingues, M.C. and Guerineau, M. 1987. Sequence and transcription of the β-glucosidase gene of Kluyveromyces fragalis cloned in Saccharomyces cerevisiae. Curr. Genet. 12: 175–184.

    Article  CAS  Google Scholar 

  43. Kohchi, C. and Toh-e, A. 1985. Nucleotide sequence of Candida pelliculosa β-glucosidase gene. Nucleic Acids Res. 13: 6273–6282.

    Article  CAS  Google Scholar 

  44. Machida, M., Ohtsuki, I., Fukui, S. and Yamashita, I. 1988. Nucleotide sequences of Saccharomycopsis fibuligera genes for extracellular β-glucosidases as expressed in Saccharomyces cerevisiae. App. Env. Micro. 54: 3147–3155.

    CAS  Google Scholar 

  45. Grabnitz, F., Ruecknagel, K.P., Seiss, M. and Staudenbauer, W.L. 1989. Nucleotide sequence of the Clostridium thermocellum bglB gene encoding thermostable β-glucosidase B: homology to other β-glucosidases. Mol. Gen. Genet. 217: 70–76.

    Article  CAS  Google Scholar 

  46. Moranelli, F., Barbeir, J.R., Dove, M.J., MacKay, R.M., Seligy, V.L., Yaguchi, M. and Willick, G.E. 1986. A clone coding for Schizophiyllum commune β-glucosidase: homology with a yeast β-glucosidase. Biochem. Int. 12: 905–912.

    CAS  PubMed  Google Scholar 

  47. Love, D.R., Fisher, R. and Bergquist, P.L. 1988. Sequence structure and expression of a cloned β-glucosidase gene from an extreme thermophile. Mol. Gen. Genet. 213: 84–92.

    Article  CAS  Google Scholar 

  48. Wakarchuk, W.W., Greenberg, N.M., Kilburn, D.G., Miller, R.C. Jr. and Warren, R.A.J. 1988. Structure and transcription analysis of the gene encoding a cellobiase from Agrobacterium sp. strain ATCC 21400. J. Bact. 170: 301–307.

    Article  CAS  Google Scholar 

  49. Penttila, M., Nevalainen, H., Ratto, M., Salminen, E. and Knowles, J.K.C. 1987. A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene 61: 155–164.

    Article  CAS  Google Scholar 

  50. Hynes, M.J., Corrick, C.M. and King, J.A. 1983. Isolation of genomic clones containing the amdS gene of Aspergillus nidulans and there use in the analysis of structural and regulatory mutations. Mol. Cell. Biol. 3: 1430–1439.

    Article  CAS  Google Scholar 

  51. Nelson, N.J. 1944. A photometric adaption of the Smogyi method for determination of glucose. J. Biol. Chem. 153: 375–380.

    CAS  Google Scholar 

  52. Somogyi, M.J. 1952. Notes on sugar determination. J. Biol. Chem. 195: 19–23.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnett, C., Berka, R. & Fowler, T. Cloning and Amplification of the Gene Encoding an Extracellular β-Glucosidase from Trichoderma reesei: Evidence for Improved Rates of Saccharification of Cellulosic Substrates. Nat Biotechnol 9, 562–567 (1991). https://doi.org/10.1038/nbt0691-562

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0691-562

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing