Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Materials and Methods
  • Published:

Apropos Aprotinin: A Review

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Hansen, J., Billich, S., Schulze, T., Sukrow, S. and Moelling, K. 1988. Partial purification and substrate analysis of bacterially expressed HIV proteases by means of monoclonal antibody. EMBO J. 7: 1785–1791.

    Article  CAS  Google Scholar 

  2. Allen, P.M. 1987. Antigen processing at the molecular level. Immunol. Today 8: 270–273.

    Article  CAS  Google Scholar 

  3. Kunitz, M. and Northrop, J.H. 1936. Isolation from beef pancreas of crystalline trypsinogen, trypsin, trypsin inhibitor, and an inhibitor trypsin compound. J. Gen. Physiol. 19: 991–1007.

    Article  CAS  Google Scholar 

  4. Fritz, H. and Wunderer, G. 1983. Biochemistry and applications of aprotinin, the Kallikrein inhibitor from bovine organs. Arzneim. Forsch./Drug Res. 33: 479–494.

    CAS  Google Scholar 

  5. Hochstrasser, K. and Wachter, E. 1980. A new Kunitz-type inhibitor from bovine serum: amino acid sequence determination. FEBS Lett. 119: 58–62.

    Article  Google Scholar 

  6. Frey, E.K., Kraut, H. and Werle, E. (Eds.). 1968. Das Kallikrein-kinin-system und seine inhibitoren, pp. 114–142. F. Enke-Verlag, Stuttgart, F.R.G.

    Google Scholar 

  7. Zyznar, E.S. 1981. A rationale for the application of trasylol as a protease inhibitor in radioimmunoassay. Life Sci. 28: 1861–1866.

    Article  CAS  Google Scholar 

  8. Hafeli, R. 1981. U.S. Patent 4,259,447.

  9. Johnson, D.A. and Travis, J. 1976. Rapid purification of human trypsin and chymotrypsin I. Anal. Biochem. 72: 573–576.

    Article  CAS  Google Scholar 

  10. Beck, E.A., Bachmann, P., Barbier, P. and Furlan, M. 1976. Importance of protease inhibition in studies on purified factor VIII (antihemophilic factor) Thromb. Haemostasis. 35: 186–190.

    Article  CAS  Google Scholar 

  11. Andersson, A., Eriksson, U. and Ostenson, C.G. 1981. Glucagon production by cultured pancreatic islets: effects of different culture conditions and media. In Vitro 17: 378–384.

    Article  CAS  Google Scholar 

  12. Amundsen, E., Putter, J., Friberger, P., Knos, M., Lardsbraten, M. and Claesen, G. 1979. Methods for the determination of glandular Kallikrein by means of a chromo-genic tripeptide substrate. Adv. Expt. Med. Biol. 120A: 83–95.

    Article  CAS  Google Scholar 

  13. Matas, A.J., Sutherland, D.E.R., Steffens, M.W. and Narajian, J.S. 1976. Short-term culture of adult pancreatic fragments for purification and transplantation of islets of Langerhans. Surgery 80: 183–191.

    CAS  PubMed  Google Scholar 

  14. Wunschmann–Henderson, B., Horwitz, D.L. and Astrup, T. 1972. Release of plas-minogen activator from viable leukocytes of man, baboon, dog, and rabbit. Proc. Soc. Exp. Biol. Med. 141: 634–638.

    Article  Google Scholar 

  15. Murakami, H. 1989. Serum-free media used for cultivation of hybridomas. In: Monoclonal Antibodies: Production and Application, pp. 107–141. Alan Liss, Inc., NY.

    Google Scholar 

  16. Cook, J.R. and Chen, J.-K. 1988. Enhancement of transformed cell growth in agar by serine protease inhibitors. J. Cell. Physiol. 136: 188–193.

    Article  CAS  Google Scholar 

  17. Karl, D.W., Bohn, M.A. and Flickinger, M.C. Cleavage of murine IgG2a by an acid proteinase released by hybridoma cells: acid protease from mouse hybridoma. Abstract, Am. Chem. Soc., 196th Meeting.

  18. Offord, R.E., Philippe, J., Davis, J.G., Halban, P.A. and Berger, M. 1979. Inhibition of degradation of insulin by ophthalmic acid and by a bovine pancreatic proteinase inhibitor. Biochem. J. 182: 249–251.

    Article  CAS  Google Scholar 

  19. Goldberg, A.R. and Lazarowitz, S.G. 1974. Plasminogen activators of normal and transformed cells. In: Bayer Symposium V, Proteinase Inhibitors. Fritz, H., Tschesche, H., Greene, L. J., and Truscheit, E. (Eds.), pp. 631–648. Springer-Verlag, New York.

    Chapter  Google Scholar 

  20. Nakamura, T., Asami, O., Tanaka, K. and Ichihara, A. 1984. Increased survival of rat hepatocytes in serum-free medium by inhibition of a trypsin-like protease associated with their plasma membranes. Exp. Cell. Res. 154: 81–91.

    Article  Google Scholar 

  21. Asami, O.T., Nakamura, T., Mura, T. and Ichihara, A. 1984. Identification of trypsin inhibitor in bovine pituitary extracts as a survival factor for adult rat hepatocytes in primary culture. J. Biochem. 95: 299–309.

    Article  CAS  Google Scholar 

  22. Davis, H., Gasco, C. and Kiernan, J.A. 1976. Effects of aprotinin on organ cultures of the rat's kidney. In Vitro. 12: 192–197.

    Article  CAS  Google Scholar 

  23. Hirschhorn, R., Grossman, J., Troll, W. and Weissman, G. 1971. The effects of epsilon amino caproic acid and other inhibitors of proteolysis upon the response of human peripheral blood lymphocytes to phytohemagglutinin. J. Clin. Invest. 50: 1206–1217.

    Article  CAS  Google Scholar 

  24. Hart, D.A. 1977. The effect of soybean trypsin inhibitor on concanavalin A and phytohemagglutinin stimulation of hamster, guinea pig, rat, and mouse lymphoid cells. Cell. Immunol. 32: 146–159.

    Article  CAS  Google Scholar 

  25. Vischer, T.L. 1979. Protease inhibitors reduce mitogen-induced lymphocyte stimulation. Immunol. 36: 811–813.

    CAS  Google Scholar 

  26. Higuchi, S., Ohkawara, S., Nakamura, S. and Yoshinaga, M. 1977. The polyvalent protease inhibitor, trasylol, inhibits DNA synthesis of mouse lymphocytes by an indirect mechanism. Cell. Immunol. 34: 395–405.

    Article  CAS  Google Scholar 

  27. Hunt, L.T., Barber, W.C. and Daghoff, M.O. 1974. Epidermal growth factor: internal duplication and probable relationship to pancreatic secretory trypsin inhibitor. Biochim. Biophys. Res. Commun. 60: 102–1028.

    Article  Google Scholar 

  28. Eaton, D.L. and Baker, J.B. 1983. Evidence that a variety of cultured cells secrete protease nexin and produce a distinct cytoplasmic serine-protease binding factor. J. Cell. Physiol. 117: 175–182.

    Article  CAS  Google Scholar 

  29. Knauer, D.J. and Cunningham, D.D. 1984. Protease nexins: cell-secreted proteins which regulate extracellular serine proteases. Trends. Biochem. Sci. 9: 231–233.

    Article  Google Scholar 

  30. Edwards, D.R., Murphy, G., Reynolds, J.J., Whitman, S.E., Dochertz, A.J.P., Angel, P. and Heath, J.K. 1987. Transforming growth factor beta modulates the expression of collagenase and metalloprotemase inhibitor. EMBO J. 6: 1899–1904.

    Article  CAS  Google Scholar 

  31. Hawkins, R.L. and Seeds, N.W. 1986. Effect of proteases and their inhibitors on neurite outgrowth from neonatal mouse sensory ganglia in culture. Brain Res. 398: 63–70.

    Article  CAS  Google Scholar 

  32. Fischer, G. 1982. Cultivation of mouse cerebellar cells in serum-free, hormonally defined media: survival of neurons. Neurosci. Lett. 28: 325–329.

    Article  CAS  Google Scholar 

  33. Catalioto, R.M., Negrel, R., Gaillard, D. and Ailhaud, G. 1987. Growth-promoting activity in serum-free medium of Kallikrein-like arginylesteropeptidases from rat sub-maxillary gland. J. Cell. Physiol. 130: 352–360.

    Article  CAS  Google Scholar 

  34. Kramer, M.D., Fruth, U., Simon, H.-G. and Simon, M.M. 1989. Expression of cytoplasmic granules with T cell-associated serine proteinase activity in Ly-2+ (CD8+) T lymphocytes responding to lymphocytic choriomeningitis virus in vivo. Eur. J. Immunol. 19: 151–156.

    Article  CAS  Google Scholar 

  35. Auberger, P., Mary, D., Breittmayer, J.-P., Aussel, C. and Fehlmann, M. 1989. Chymotryptic-type protease inhibitors block the increase in Ca2+ and IL-2 production in activated Jurkat T cells. J. Immunol. 142: 1253–1259.

    CAS  PubMed  Google Scholar 

  36. Barnes, D.W., McKeehan, W.L. and Sato, G.H. 1987. Cellular endocrinology: integrated physiology in vitro. In Vitro Cell. Dev. Biol. 23: 659–662.

    Article  CAS  Google Scholar 

  37. Barnes, D., Sirbasku, D.A. and Sato, G.H. (Eds.). 1984. Cell Culture Methods for Molecular and Cell Biology, Vol. 1–4. Alan R. Liss, New York.

    Google Scholar 

  38. Bodecker, B.G.D., Berg, G.J., Hewlett, G. and Schlumberger, H.D. 1985. A screening method to develop serum-free culture media for adherent cell lines. Dev. Biol. Stand. 60: 93–99.

    Google Scholar 

  39. Maurer, H.R. 1986. Towards chemically-defined, serum-free media for mammalian cell culture. In: Animal Cell Culture: A Practical Approach. Freshney, R.I. (Ed.) pp. 13–31. IRL Press, Oxford, U.K.

    Google Scholar 

  40. Freshney, R.I. 1987. Culture of Animal Cells: A Manual of Basic Technique. Alan R. Liss, New York.

    Google Scholar 

  41. Hewlett, G. 1988. Zellkulturen und der einsatz von serumfreien medien. BioEng. 4/88: 110–112.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hewlett, G. Apropos Aprotinin: A Review. Nat Biotechnol 8, 565–568 (1990). https://doi.org/10.1038/nbt0690-565

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0690-565

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing