Hypersecretion of a Cellulase from Clostridium thermocellum in Bacillus subtilis by Induction of Chromosomal DNA Amplification

Abstract

We have inserted a DNA fragment composed of (i) the promoter and the export signal of the Bacillus subtilis levansucrase gene; (ii) the sequence encoding the mature part of the Clostridium thermocellum endoglucanase A gene in a specific site of the B. subtilis chromosome. The insert was flanked by directly repeated pBR322 sequences of 3.9 kb. Plasmid pE194, which has a thermosensitive replication, was integrated adjacent to one of the repeats. When the integrated plasmid was allowed to replicate, the insert and one of the repeats was amplified up to a level of about 250 copies per chromosome. Endoglucanase A was efficiently synthesized in, and secreted from, cells containing the amplified structure, since the heterologous fusion protein was the major extracellular protein in a B. subtilis sacUh strain. The NH2 -terminal sequence of the secreted protein revealed three different cleavage sites in the vicinity of the signal peptidase recognition sequence.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Lepesant, J.-A., Kunst, F., Pascal, M., Lepesant-Kejzlarova, J., Steinmetz, M. and Dedonder, R. 1976 Specific and pleiotropic regulatory echanisms in the sucrose system of Bacillus subtilis 168, p. 59–69. In: Microbiology-1976. D. Schlessinger (Ed.). American Society for Microbiology, Washington, D.C.

  2. 2

    Joliff, G., Edelman, A., Klier, A. and Rapoport, G. 1989. Inducible secretion of a cellulase from Clostridium thermocellum in Bacillus subtilis. Appl. Environ. Microbiol., 55: 2739–2744.

  3. 3

    Ehrlich, S.D., Noirot, Ph., Petit, M.A., Jannière, L., Michel, B. and te Riele, H. 1986. Structural instability of Bacillus subtilis plasmids. p. 71–83. In: Genetic Engineering. J. Setlow (Ed.). Plenum Press, NY.

  4. 4

    Te Riele, H., Michel, B. and Ehrlich, S.D. 1986. Single-stranded plasmid DNA in Bacillus subtilis and Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 83: 2541–2545.

  5. 5

    Niaudet, B., Jannière, L. and Ehrlich, S.D. 1984. Recombination between repeated DNA sequences occurs more often in plasmids than in the chromosome of Bacillus subtilis. Mol. Gen. Genet. 197: 46–54.

  6. 6

    Young, M. 1984. Gene amplification in Bacillus subtilis. J. Gen. Microbiol. 130: 1613–1621.

  7. 7

    Albertini, A.M., Galizzi, A. 1985. Amplification of chromosomal region Bacillus subtilis. J. Bacteriol. 162: 1203–1211.

  8. 8

    Jannière, L., Niaudet, B., Pierre, E. and Ehrlich, S.D. 1985. Stable gene amplification in the chromosome of Bacillus subtilis. Gene 40: 47–55.

  9. 9

    Petit, M.A., Mesas, J.M., Noirot, P. and Ehrlich, S.D. 1990. Inducible amplification in the bacterial chromosome. Submitted.

  10. 10

    Kunst, F., Pascal, M., Lepesant-Kejzlarova, J., Lepesant, J.-A., Billault, A., et Dedonder, R. 1974. Pleiotropic mutations affecting sporulation conditions and the syntheses of extracellular enzymes in Bacillus subtilis 168. Biochimie 56: 1481–1489.

  11. 11

    Weisblum, B., Graham, M.Y., Gryczan, T. and Dubnau, D. 1979. Plasmid copy number control: isolation and characterization of high-copy-number mutants of plasmid pE194. J. Bacteriol. 137: 635–643.

  12. 12

    Noirot, Ph., Petit M.A. and Ehrlich, S.D. 1987. Plasmid replication stimulates DNA recombination in Bacillus subtilis. J. Mol. Biol. 196: 39–48.

  13. 13

    Béguin, P., Cornet, P. and Aubert, J.-P. 1985. Sequence of a cellulase gene of the thermophilic bacterium Clostridium thermocellum. J. Bacteriol. 162: 102–105.

  14. 14

    Matsudaira, P. 1987. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J. Biol. Chem. 262: 10035–10038.

  15. 15

    Robson, L.M. and Chambliss, G.H. 1987. Beta-1,4-endoglucanase gene of Bacillus subtilis DLG. J. Bacteriol. 169: 2017–2025.

  16. 16

    Young, M. and Cullum, J. 1987. A plausible mechanism for large-scale chromosomal DNA amplification in streptomycetes. FEBS Letts. 212: 10–14.

  17. 17

    Pétré, D., Millet, J., Longin, R., Béguin, P., Girard, H. and Aubert, J.-P. 1986. Purification and properties of the endoglucanase C of Clostridium thermocellum produced in Escherichia coli. Biochimie 68: 687–695.

  18. 18

    Gibson, T.J. 1984. Ph. D. thesis, University of Cambridge, G.B.

  19. 19

    Dagert, M., Jones, I., Goze, A., Romac, S., Niaudet, B. and Ehrlich, S.D. 1984. Replication functions of pC194 are necessary for efficient plasmid transduction of M13 phage. EMBO J. 3: 81–86.

  20. 20

    Maniatis, T., Fritsch, E.F. and Sambrook, J. 1982. Molecular Cloning, a Laboratory Manual. Cold Spring Harbor, New York.

  21. 21

    Schaeffer, P., Ionesco, H., Ryter, A., et Balassa, G. 1965. La sporulation de Bacillus subtilis, étude génétique et physiologique, p. 553–563. In: Mécanismes de Régulation des Activités Cellulaires Chez les Microorganismes. Paris: Centre National de la Recherche Scientifique.

  22. 22

    Cohen, S.N., Chang, A.C.Y. and Hsu, L. 1972. Non chromosomal antibiotic resistance in bacteria; genetic transformation of Escherichia coli by R-factor DNA. Proc. Natl. Acad. Sci. USA 69: 2110–2114.

  23. 23

    Anagnostopoulos, C. and Spizizen, J. 1961. Requirements for transformation in Bacillus subtilis. J. Bacteriol. 81: 741–746.

  24. 24

    Cornet, P., Millet, J., Béguin, P. and Aubert, J.-P. 1983. Characterization of two cel (cellulose degradation) genes of Clostridium thermocellum coding for endoglucanases. Bio/Technology 1: 589–594.

  25. 25

    Béguin, P., Cornet, P. and Millet, J. 1983. Identification of the endoglucanase encoded by the celB gene of Clostridium thermocellum. Biochimie 65: 495–500.

  26. 26

    Béguin, P. 1983. Detection of cellulase activity in polyacrylamide gels using Congo red stained agar replicas. Anal. Biochem. 131: 333–336.

  27. 27

    Horinouchi, S. and Weisblum, B. 1982. Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloram-phenicol resistance. J. Bacteriol. 150: 815–825.

  28. 28

    Niaudet, B. and Ehrlich, S.D. 1979. In vitro genetic labeling of Bacillus subtilis cryptic plasmid pHV400. Plasmid 2: 48–58.

  29. 29

    Harris-Warwick, R.M., Elkana, Y., Ehrlich, S.D. and Lederberg, J. 1975. Electrophoretic separation of Bacillus subtilis genes. Proc. Natl. Acad. Sci. USA 72: 2207–2211.

  30. 30

    Fouet, A., Klier, A. and Rapoport, G. 1982. Cloning and expression in Escherichia coli of the sucrase gene from Bacillus subtilis. Mol. Gen. Genet. 186: 399–404.

  31. 31

    Pétre, J., Longin, R. and Millet, J. 1981. Purification and properties of an endo-β-1,4-glucanase from Clostridium thermocellum. Biochimie 63: 629–639.

  32. 32

    Jannière, L. and Ehrlich, S.D. 1987. Recombination between short repeated sequences is more frequent in plasmids than in the chromosome of Bacillus subtilis. Mol. Gen. Genet. 210: 116–121.

  33. 33

    Lo, A.C., MacKay, R.M., Seligy, V.L., Willick, G.E. 1988. Bacillus subtilis β-1,4-endoglucanase products from intact and truncated genes are secreted into the extracellular medium by Escherichia coli. Appl. Environ. Microbiol. 54: 2287–2292.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading