Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Hypersecretion of a Cellulase from Clostridium thermocellum in Bacillus subtilis by Induction of Chromosomal DNA Amplification

Abstract

We have inserted a DNA fragment composed of (i) the promoter and the export signal of the Bacillus subtilis levansucrase gene; (ii) the sequence encoding the mature part of the Clostridium thermocellum endoglucanase A gene in a specific site of the B. subtilis chromosome. The insert was flanked by directly repeated pBR322 sequences of 3.9 kb. Plasmid pE194, which has a thermosensitive replication, was integrated adjacent to one of the repeats. When the integrated plasmid was allowed to replicate, the insert and one of the repeats was amplified up to a level of about 250 copies per chromosome. Endoglucanase A was efficiently synthesized in, and secreted from, cells containing the amplified structure, since the heterologous fusion protein was the major extracellular protein in a B. subtilis sacUh strain. The NH2 -terminal sequence of the secreted protein revealed three different cleavage sites in the vicinity of the signal peptidase recognition sequence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lepesant, J.-A., Kunst, F., Pascal, M., Lepesant-Kejzlarova, J., Steinmetz, M. and Dedonder, R. 1976 Specific and pleiotropic regulatory echanisms in the sucrose system of Bacillus subtilis 168, p. 59–69. In: Microbiology-1976. D. Schlessinger (Ed.). American Society for Microbiology, Washington, D.C.

    Google Scholar 

  2. Joliff, G., Edelman, A., Klier, A. and Rapoport, G. 1989. Inducible secretion of a cellulase from Clostridium thermocellum in Bacillus subtilis. Appl. Environ. Microbiol., 55: 2739–2744.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ehrlich, S.D., Noirot, Ph., Petit, M.A., Jannière, L., Michel, B. and te Riele, H. 1986. Structural instability of Bacillus subtilis plasmids. p. 71–83. In: Genetic Engineering. J. Setlow (Ed.). Plenum Press, NY.

    Chapter  Google Scholar 

  4. Te Riele, H., Michel, B. and Ehrlich, S.D. 1986. Single-stranded plasmid DNA in Bacillus subtilis and Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 83: 2541–2545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Niaudet, B., Jannière, L. and Ehrlich, S.D. 1984. Recombination between repeated DNA sequences occurs more often in plasmids than in the chromosome of Bacillus subtilis. Mol. Gen. Genet. 197: 46–54.

    Article  CAS  PubMed  Google Scholar 

  6. Young, M. 1984. Gene amplification in Bacillus subtilis. J. Gen. Microbiol. 130: 1613–1621.

    CAS  PubMed  Google Scholar 

  7. Albertini, A.M., Galizzi, A. 1985. Amplification of chromosomal region Bacillus subtilis. J. Bacteriol. 162: 1203–1211.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Jannière, L., Niaudet, B., Pierre, E. and Ehrlich, S.D. 1985. Stable gene amplification in the chromosome of Bacillus subtilis. Gene 40: 47–55.

    Article  PubMed  Google Scholar 

  9. Petit, M.A., Mesas, J.M., Noirot, P. and Ehrlich, S.D. 1990. Inducible amplification in the bacterial chromosome. Submitted.

    Google Scholar 

  10. Kunst, F., Pascal, M., Lepesant-Kejzlarova, J., Lepesant, J.-A., Billault, A., et Dedonder, R. 1974. Pleiotropic mutations affecting sporulation conditions and the syntheses of extracellular enzymes in Bacillus subtilis 168. Biochimie 56: 1481–1489.

    Article  CAS  PubMed  Google Scholar 

  11. Weisblum, B., Graham, M.Y., Gryczan, T. and Dubnau, D. 1979. Plasmid copy number control: isolation and characterization of high-copy-number mutants of plasmid pE194. J. Bacteriol. 137: 635–643.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Noirot, Ph., Petit M.A. and Ehrlich, S.D. 1987. Plasmid replication stimulates DNA recombination in Bacillus subtilis. J. Mol. Biol. 196: 39–48.

    Article  CAS  PubMed  Google Scholar 

  13. Béguin, P., Cornet, P. and Aubert, J.-P. 1985. Sequence of a cellulase gene of the thermophilic bacterium Clostridium thermocellum. J. Bacteriol. 162: 102–105.

    PubMed  PubMed Central  Google Scholar 

  14. Matsudaira, P. 1987. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J. Biol. Chem. 262: 10035–10038.

    CAS  PubMed  Google Scholar 

  15. Robson, L.M. and Chambliss, G.H. 1987. Beta-1,4-endoglucanase gene of Bacillus subtilis DLG. J. Bacteriol. 169: 2017–2025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Young, M. and Cullum, J. 1987. A plausible mechanism for large-scale chromosomal DNA amplification in streptomycetes. FEBS Letts. 212: 10–14.

    Article  CAS  Google Scholar 

  17. Pétré, D., Millet, J., Longin, R., Béguin, P., Girard, H. and Aubert, J.-P. 1986. Purification and properties of the endoglucanase C of Clostridium thermocellum produced in Escherichia coli. Biochimie 68: 687–695.

    Article  PubMed  Google Scholar 

  18. Gibson, T.J. 1984. Ph. D. thesis, University of Cambridge, G.B.

  19. Dagert, M., Jones, I., Goze, A., Romac, S., Niaudet, B. and Ehrlich, S.D. 1984. Replication functions of pC194 are necessary for efficient plasmid transduction of M13 phage. EMBO J. 3: 81–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maniatis, T., Fritsch, E.F. and Sambrook, J. 1982. Molecular Cloning, a Laboratory Manual. Cold Spring Harbor, New York.

    Google Scholar 

  21. Schaeffer, P., Ionesco, H., Ryter, A., et Balassa, G. 1965. La sporulation de Bacillus subtilis, étude génétique et physiologique, p. 553–563. In: Mécanismes de Régulation des Activités Cellulaires Chez les Microorganismes. Paris: Centre National de la Recherche Scientifique.

    Google Scholar 

  22. Cohen, S.N., Chang, A.C.Y. and Hsu, L. 1972. Non chromosomal antibiotic resistance in bacteria; genetic transformation of Escherichia coli by R-factor DNA. Proc. Natl. Acad. Sci. USA 69: 2110–2114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Anagnostopoulos, C. and Spizizen, J. 1961. Requirements for transformation in Bacillus subtilis. J. Bacteriol. 81: 741–746.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Cornet, P., Millet, J., Béguin, P. and Aubert, J.-P. 1983. Characterization of two cel (cellulose degradation) genes of Clostridium thermocellum coding for endoglucanases. Bio/Technology 1: 589–594.

    CAS  Google Scholar 

  25. Béguin, P., Cornet, P. and Millet, J. 1983. Identification of the endoglucanase encoded by the celB gene of Clostridium thermocellum. Biochimie 65: 495–500.

    Article  PubMed  Google Scholar 

  26. Béguin, P. 1983. Detection of cellulase activity in polyacrylamide gels using Congo red stained agar replicas. Anal. Biochem. 131: 333–336.

    Article  PubMed  Google Scholar 

  27. Horinouchi, S. and Weisblum, B. 1982. Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloram-phenicol resistance. J. Bacteriol. 150: 815–825.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Niaudet, B. and Ehrlich, S.D. 1979. In vitro genetic labeling of Bacillus subtilis cryptic plasmid pHV400. Plasmid 2: 48–58.

    Article  CAS  PubMed  Google Scholar 

  29. Harris-Warwick, R.M., Elkana, Y., Ehrlich, S.D. and Lederberg, J. 1975. Electrophoretic separation of Bacillus subtilis genes. Proc. Natl. Acad. Sci. USA 72: 2207–2211.

    Article  Google Scholar 

  30. Fouet, A., Klier, A. and Rapoport, G. 1982. Cloning and expression in Escherichia coli of the sucrase gene from Bacillus subtilis. Mol. Gen. Genet. 186: 399–404.

    Article  CAS  PubMed  Google Scholar 

  31. Pétre, J., Longin, R. and Millet, J. 1981. Purification and properties of an endo-β-1,4-glucanase from Clostridium thermocellum. Biochimie 63: 629–639.

    Article  PubMed  Google Scholar 

  32. Jannière, L. and Ehrlich, S.D. 1987. Recombination between short repeated sequences is more frequent in plasmids than in the chromosome of Bacillus subtilis. Mol. Gen. Genet. 210: 116–121.

    Article  PubMed  Google Scholar 

  33. Lo, A.C., MacKay, R.M., Seligy, V.L., Willick, G.E. 1988. Bacillus subtilis β-1,4-endoglucanase products from intact and truncated genes are secreted into the extracellular medium by Escherichia coli. Appl. Environ. Microbiol. 54: 2287–2292.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petit, MA., Joliff, G., Mesas, J. et al. Hypersecretion of a Cellulase from Clostridium thermocellum in Bacillus subtilis by Induction of Chromosomal DNA Amplification. Nat Biotechnol 8, 559–563 (1990). https://doi.org/10.1038/nbt0690-559

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0690-559

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing