Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Characterization of Recombinant Factor XIIIa Produced in Saccharomyces cerevisiae

Abstract

Recombinant factor XIIIa (FXIIIa), produced in Saccharomyces cerevisiae, was recovered as a fully active cytosolic component and rigorously compared to natural F XIIIa from human placenta with respect to physicochemical and functional properties. Identical parameters were found in SDS polyacrylamide gel electrophoresis, analytical ultracentrifugation and HPLC gel filtration, and all spectral characteristics including derivative UV absorbance, fluorescence and circular dichroism were identical. Similarly, the interaction of both proteins with polyclonal antibodies directed against the entire FXIIIa or its N-terminal 4 kD activation peptide were identical. Furthermore, thrombin cleavage and fibrin cross-linking showed indistinguishable patterns. The only difference we observed was with respect to endgroup analysis. The recombinant protein is homogeneous, whereas placental FXIIIa shows multiple electrophoretic bands caused by microheterogeneity in the C-terminal part of the protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jaenicke, R. and Rudolph, R. 1986. Folding and association of oligomeric proteins. Meth. Enzymol. 131: 218–250.

    Article  CAS  Google Scholar 

  2. Schmid, F.X. 1989. Spectral methods of characterizing protein conformation and conformational changes, p. 251–285 In: Protein Structure. A Practical Approach, Vol. 1. Creighton, T. E. (Ed.). IRL Press, Oxford.

    Google Scholar 

  3. Delvos, U. and Müller-Berghaus, G. 1985. Die regulation der Blutgerinnung. Naturwissenschaften 72: 461–469.

    Article  CAS  Google Scholar 

  4. Folk, J.E. and Finlayson, J.S. 1977. The (γ-glutamyl) lysin cross-link and the catalytic role of transaminases. Adv. Protein Chem. 31: 1–133.

    Article  CAS  Google Scholar 

  5. Bohn, H. 1978. The human fibrin-stabilizing factors. Mol. Cell. Biochem. 20: 67–75.

    Article  CAS  Google Scholar 

  6. Schwartz, M.L., Pizzo, S.V., Hill, R.L. and McKee, P.A. 1973. Human factor XIII from plasma and platelets. J. Biol. Chem. 248: 1395–1407.

    CAS  PubMed  Google Scholar 

  7. Takahashi, N., Takahashi, Y. and Putnam, F.W. 1986. Primary structure of blood coagulation factor XHIa (fibrinoligase transglutaminase) from human placenta. Proc. Natl. Acad. Sci. USA 83: 8021–8023.

    Google Scholar 

  8. Ichinose, A., Hendrickson, L.E., Fujikawa, K. and Davie, E.W. 1986. Amino acid sequence of the a-subunit of human factor XIII. Biochemistry 25: 6900–6906.

    Article  CAS  Google Scholar 

  9. Grundmann, U., Amann, E., Zettlmeissl, G. and Küpper, H.A. 1986. Characterization of cDNA coding for human factor XIIIa. Proc. Natl. Acad. Sci. USA 83: 8024–8028.

    Article  CAS  Google Scholar 

  10. Amann, E., Abel, K.-J., Grundmann, U., Okazaki, H. and Küpper, H.A. 1988. Synthesis of human FXIIIa in bacterial cells. Behring Inst. Mitt. 82: 35–42.

    CAS  Google Scholar 

  11. Rinas, U., Risse, B., Jaenicke, R., Abel, K.-J. and Zettlmeissl, G. 1990. Denaturation-renaturation of FXIIIa isolated from human placenta. Biological Chemistry, Hoppe Seyler 371: 49–56.

    Article  CAS  Google Scholar 

  12. Bröker, M. and Karges, H.E. 1988. Expression of human factor XIIIa in yeast. Yeast 4: S142.

    Google Scholar 

  13. Ichinose, A. and Davie, E.W. 1988. Characterization of the gene for the a-subunit of human factor XIII, a blood coagulation factor. Proc. Natl. Acad. Sci. USA 85: 5829–5833.

    Article  CAS  Google Scholar 

  14. Suzuki, K., Matsui, K., Ito, S., Fujita, K. and Matsumoto, H. 1988. Polymorphism of the a-subunit of coagulation factor XIII: Evidence for subtypes of the FXIIIA*1 and FXIIIA*2 alleles. Am. J. Hum. Genet. 43: 170–174.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Takagi, T. and Doolittle, R.F. 1974. Amino acid sequence studies on factor XIII and the peptide released during its activation by thrombin. Biochemistry 13: 750–756.

    Article  CAS  Google Scholar 

  16. Arfin, S.M. and Bradshaw, R.A. 1988. Cotranslational processing and protein turnover in eukaryotic cells. Biochemistry 27: 7981–7984.

    Article  Google Scholar 

  17. Rudolph, R. and Jaenicke, R. 1976. Kinetics of reassociation and reactivation of pig muscle lactate dehydrogenase after acid denaturation. Eur. J. Biochem. 63: 409–417.

    Article  CAS  Google Scholar 

  18. Jaenicke, R. 1987. Folding and association of proteins. Progr. Biophys. Mol. Biol. 47: 117–237.

    Article  Google Scholar 

  19. Bohn, H. and Schwick, H.-G. 1971. Isolierung und Charakterisierung eines fibrin-stabilisierenden Faktors aus menschlichen Plazenten. Arzneimittel Forsch. 21: 1432–1439.

    CAS  Google Scholar 

  20. Bohn, H. 1972. Comparative studies on the fibrin-stabilizing factors from human plasma, platelets and placentas. Ann. N.Y. Acad. Sci. 202: 256–272.

    Article  CAS  Google Scholar 

  21. Cesarini, G. and Murray, J.A. 1987. Plasmid vectors carrying the replication origin of filamentous single-stranded phages, p. 135–154. In: Genetic Engineering, Vol. 9. Setlow, J. K. (Ed.). Plenum Press, New York.

    Chapter  Google Scholar 

  22. Bröker, M. 1986. Vectors for regulated high-level expression of proteins fused to truncated forms of Escherichia coli β-galactosidase. Gene Anal. Techn. 3: 53–57.

    Article  Google Scholar 

  23. Bröker, M. and Amann, E. 1986. pUC12-STOP: An expression vector with portable translation stop signals. Appl. Microbiol. Biotechnol. 23: 294–296.

    Article  Google Scholar 

  24. Wetlaufer, D.B. 1962. Ultraviolet spectra of proteins and amino acids. Adv. Protein Chem. 17: 304–390.

    Google Scholar 

  25. Yphantis, D.A. 1964. Equilibrium ultracentrifugation of dilute solutions. Biochemistry 3: 297–317.

    Article  CAS  Google Scholar 

  26. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  Google Scholar 

  27. Margolis, J. and Wrigley, C.W. 1975. Improvement of pore gradient electrophoresis by increasing the degree of cross-linkage at high acrylamide concentrations. J. Chromatography 106: 204–209.

    Article  CAS  Google Scholar 

  28. Tsang, V.C.W., Peralta, J.M. and Simons, A.R. 1983. Enzyme-linked immunoelectrotransfer blot techniques (EITB) for studying the specification of antigens and antibodies separated by gel-electrophoresis. Meth. Enzymol. 92: 377–391.

    Article  CAS  Google Scholar 

  29. Hayashi, R., 1976. Carboxypeptidase Y. Meth. Enzymol. 45: 568–587.

    Article  CAS  Google Scholar 

  30. Qureshi, A.G., Fohlin, L. and Bergström, J. 1984. Application of high-performance liquid chromatography to the determination of free amino acids in physiological fluids. J. Chromatography 297: 91–100.

    Article  CAS  Google Scholar 

  31. Egbring, R., Schmidt, W. and Havemann, K. 1973. Die vereinfachte radiologische Faktor XIII-Bestimmung und ihre klinische Anwendung bei kongenitalem FXIII-Mangel. Blut 27: 6–19.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rinas, U., Risse, B., Jaenicke, R. et al. Characterization of Recombinant Factor XIIIa Produced in Saccharomyces cerevisiae. Nat Biotechnol 8, 543–546 (1990). https://doi.org/10.1038/nbt0690-543

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0690-543

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing