Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Wood Hydrolysis by Cellulomonas Fimi Endoglucanase and Exogiucanase Coexpressed as Secreted Enzymes in Saccharomyces Cerevisiae

Abstract

The enzymatic hydrolysis of cellulose to glucose requires endo-β-1,4-glucanase, exo-β-1,4-glucanase and β-glucosidase. To engineer cellulolytic properties into the yeast Saccharomyces cerevisiae we have constructed a plasmid containing two Cellulomonat fimi cellulase genes, cenA encoding an endoglucanase and cex encoding an exoglucanase, in tandem expression cartridges. S. cerevisiae cells transformed with this plasmid produce both endoglucanase and exoglucanase as extracellular enzymes. The secreted cellulase mixture hydrolyses filter paper and pretreated aspen wood chips in reactions that are stimulated by β-glucosidase. This is the first example of the use of recombinant DNA technology to engineer co-expression of cellulases useful in wood hydrolysis and opens the way for the development of yeast strains useful for the simultaneous saccharification and fermentation of cellulosic materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dale, B.E. 1987. Lignocellulose conversion and the future of fermentation biotechnology. Trends in Biotechnology 5:f287–291.

    Article  CAS  Google Scholar 

  2. Coughlan, M.P. 1985. The properties of fungal and bacterial cellulases with comment on their production and application. Biotechnology and Genetic Engineering Reviews 3:39–109.

    Article  CAS  Google Scholar 

  3. Whittle, D.J., Kilburn, D.G., Warren, R.A.J., and Miller, R.C. Jr. 1982. Molecular cloning of a Cellulomonas fimi cellulase gene in Eschenchia coli. Gene 17:139–145.

    Article  CAS  Google Scholar 

  4. Gilkes, N.R., Kilburn, D.G., Langsford, M.L., Miller, R.C. Jr., Wakarchuk, W.W., Warren, R.A.J., Whittle, D.J., and Wong, W.K.R. 1984. Isolation and characterisation of Escherichia coli clones expressing cellulase genes from Cellulomonas fimi. J. Gen. Microbiol. 130:1377–1384.

    CAS  Google Scholar 

  5. Shoemaker, S., Schweickart, S., Ladner, M., Gelfand, D., Kwok, S., Myambo, K., and Innis, M. 1983. Molecular cloning of exocellobiohydrolase I derived from Trichoderma reesei strain L27. Bio/Technology 1:691–696.

    CAS  Google Scholar 

  6. Cornet, P., Millet, J., Beguin, P., and Aubert, J. 1983. Characterisation of two cel (cellulose degradation) genes of Clostridium thermocellum coding for endoglucanases. Bio/Technology 1:589–594.

    CAS  Google Scholar 

  7. Skipper, N., Sutherland, M., Davies, R.W., Kilburn, D., Miller, R.C. Jr., Warren, A., and Wong, R. 1985. Secretion of a bacterial cellulase by yeast. Science 230:958–960.

    Article  CAS  Google Scholar 

  8. Johnson, J.A., Wong, W.K.R., and Beatty, J.T. 1986. Expression of cellulase genes in Rhodobacter capsulatus by use of plasmid expression vectors. J. Bacteriol. 167:604–610.

    Article  CAS  Google Scholar 

  9. Van Arsdell, J.N., Kwok, S., Schweickart, V.L., Ladner, M.B., Gelfand, D.H., and Innis, M.A. 1987. Cloning, characterisation, and expression in Saccharomyces cerevisiae of endoglucanase I from Trichoderma reesei. Bio/Technology 5:60–64.

    CAS  Google Scholar 

  10. Skipper, N., Bozzato, R.P., Vetter, D., Davies, R.W., Wong, R., and Hopper, J.E. 1987. Use of the melibiase promoter and signal peptide to express a bacterial cellulase from yeast, p. 137–147. In: Biological Research on Industrial Yeasts, Vol.1. Stewart, G. G., Russell, I., Klein, R. D., and Heibsch, R. R. (Eds.). CRC Press, Boca Raton, Florida.

    Google Scholar 

  11. Knowles, J., Pentillä, M., Teeri, T., André, L., Lehtovaara, P., and Salovuori, I. 1987. The development of cellulolytic yeasts and their possible applications, p. 189–199. Ibid

    Google Scholar 

  12. Curry, C., Gilkes, N., O'Neill, G., Miller, R.C., and Skipper, N. 1988. Expression and secretion of a Cellulomonas fimi exoglucanase in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 54:476–484.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Knowles, J., Lehtovaara, P., and Teeri, T. 1987. Cellulase families and their genes. Trends in Biotechnology 5:255–261.

    Article  CAS  Google Scholar 

  14. Pentillä, M.E., André, L., Saloheimo, M., Lehtovaara, P., and Knowles, J.K.C. 1987. Expression of two Tnchoderma reesei endoglucanases in the yeast Saccharomyces cerevame. Yeast 3:175–185.

    Article  Google Scholar 

  15. Wong, W.K.R., Gerhard, B., Guo, Z.M., Kilburn, D.G., Warren, R.A.J., and Miller, R.C. Jr. 1986. Characterisation and structure of an endoglucanase gene of Cellulomonas fimi. Gene 44:315–324.

    Article  CAS  Google Scholar 

  16. O'Neill, G., Goh, S.H., Warren, R.A.J., Kilburn, D.G., and Miller, R.C. Jr. 1986. Structure of the gene encoding the exoglucanase of Cellulomonas fimi. Gene 44:325–330.

    Article  CAS  Google Scholar 

  17. Gilkes, N.R., Langsford, M.L., Kilburn, D.G., Miller, R.C. Jr., and Warren, R.A.J. 1984. Mode of action and substrate specificities of cellulases from cloned bacterial genes. J. Biol. Chem. 259:10455–10459.

    CAS  PubMed  Google Scholar 

  18. Warren, R.A.J., Beck, C.F., Gilkes, N.R., Kilburn, D.G., Langsford, M.L., Miller, R.C. Jr., O'Neill, G.P., Scheufens, M., and Wong, W.K.R. 1986. Sequence conservation and region shuffling in an endoglucanase and an exoglucanase from Cellulomonas fimi. Proteins 1:335–341.

    Article  CAS  Google Scholar 

  19. Botstein, D., Falco, S.C., Stewart, S.E., Brennan, M., Scherer, S., Stinchcomb, D.T., Struhl, K., and Davis, R.W. 1979. Sterile host yeast (SHY): a eukaryotic system of biological containment for recombinant DNA experiments. Gene 8:17–24.

    Article  CAS  Google Scholar 

  20. Sumner-Smith, M., Bozzato, R.P., Skipper, N., Davies, R.W., and Hopper, J.E. 1985. Analysis of the inducible MEL1 gene of Saccharomyces carlsbergensis and its secreted product, alpha-galactosidase (melibiase). Gene 36:333–340.

    Article  CAS  Google Scholar 

  21. Liljestrom, P.L. 1985. The nucleotide sequence of the yeast MEL1 gene. Nucleic Acids Res. 13:7257–7268.

    Article  CAS  Google Scholar 

  22. Van Tilbeurgh, H., Claeyssens, M., and de Bruyne, C.K. 1982. The use of 4-methylumbeiliferyl and other chromophoric glycosides in the study of cellulolytic enzymes. FEBS Lett. 149:152–156.

    Article  CAS  Google Scholar 

  23. Teather, R.M., and Wood, P.J. 1982. Use of Congo red-polyccacharide interactions in enumeration and characterisation of cellulolytic bacteria from bovine rumen. Appi. Environ. Microbiol. 43:777–780.

    CAS  Google Scholar 

  24. Post-Beittenmiller, M.A., Hamilton, R.W., and Hopper, J.E. 1984. Regulation of basal and induced levels of the MEL1 transcript in Saccharomyces cerevisiae. Mol. Cell. Biol. 7:1238–1245.

    Article  Google Scholar 

  25. Johnston, S.A., and Hopper, J.E. 1982. Isolation of the yeast regulatory gene GAL4 and analysis of its dosage effects on the galactose/melibiose regulon. Proc. Natl. Acad. Sci. USA 79:6971–6975.

    Article  CAS  Google Scholar 

  26. Torchia, T.E., Hamilton, R.W., Cano, C.L., and Hopper, J.E. 1984. Disruption of regulatory gene GAL80 in Saccharomyces cemnsiae: effects on carbon-controlled regulation of the galactose/melibiose pathway genes. Mol. Cell. Biol. 4:1521–1527.

    Article  CAS  Google Scholar 

  27. Ruohola, H., Liljeström, P.L., Torkkeli, T., Kopu, H., Lehtinen, P., Kalkkínen, N., and Korhola, M. 1986. Expression and regulation of the yeast MEL1 gene. FEMS Microbiol. Lett. 34:179–185.

    Article  CAS  Google Scholar 

  28. Johnston, M. 1987. A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae. Microbiol. Rev. 51:458–476.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ghose, T.K. 1987. Measurement of cellulase activities. Pure and Applied Chem. 59:257–268.

    Article  CAS  Google Scholar 

  30. Sternberg, D. 1976. A method for increasing cellulase production by Trichoderma viridae. Biotechnol. Bioeng. 18:1751–1760.

    Article  CAS  Google Scholar 

  31. Reese, E.T., and Mandels, M. 1984. Rolling with the times: production and applications of Trichoderma reesei cellulase. Annual Reports on Fermentation Processes 7:1–20.

    Article  CAS  Google Scholar 

  32. Smith, R.A., Duncan, M.J., and Moir, D.T. 1985. Heterologous protein secretion from yeast. Science 229:1219–1224.

    Article  CAS  Google Scholar 

  33. Alexander, J.K., Connors, R., and Yamamoto, N. 1981. Production of liquid fuels from cellulose by combined saccharification-fermentation or co-cultivation of Clostridia, p. 125–130. In: Advances in Biotechnology, Vol. II. Fuels, Chemicals, Foods and Waste Treatment. M. Moo-Young and C. W. Robinson (Eds.). Pergamon Press, Toronto.

    Google Scholar 

  34. Raynal, A., and Guerineau, M. 1984. Cloning and expression of the structural gene for β-glucosidase of Kluyveromyces fragilis in Escherichia coli and Saccharomyces cerevisiae. Mol. Gen. Genet. 195:108–115.

    Article  CAS  Google Scholar 

  35. Pentillä, M.E., Nevalainen, K.M.H., Raynal, A., and Knowles, J.K.C. 1984. Cloning of Aspergillus mger genes in yeast. Expression of the gene encoding Aspergillus β-glucosidase. Mol. Gen. Genet. 194:494–499.

    Article  Google Scholar 

  36. Kohchi, C., and Toh-e, A. Cloning of Candida pelliculosa β-glucosidase gene and its expression in Saccharomyces cerevisiae. 1986. Mol. Gen. Genet. 203:89–94.

    Article  CAS  Google Scholar 

  37. Mandel, M., and Higa, A. 1970. Calcium-dependent bacteriophage DNA infection. J. Mol. Biol. 53:159–162.

    Article  CAS  Google Scholar 

  38. Ito, H., Murata, K., and Kimura, A. 1984. Transformation of intact yeast cells treated with alkali cations or thiol compounds. Agric. Biol. Chem. 48:341–347.

    Article  CAS  Google Scholar 

  39. Birnboim, H.C., and Doly, J. 1982. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7:1513–1515.

    Article  Google Scholar 

  40. Sanger, F., Nicklen, S., and Coulson, A.R. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci USA 74:5463–5467.

    Article  CAS  Google Scholar 

  41. Kunkel, T.A. 1985. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. Natl. Acad. Sci. USA 82:488–492.

    Article  CAS  Google Scholar 

  42. Maniatis, T., Fritsch, E.F., and Sambrook, J. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory. Cold Spring Harbor, New York.

    Google Scholar 

  43. Laskowski, M. Sr., 1980. Purification and properties of the mung bean nucleases. Methods Enzymol. 65:263–276.

    Article  CAS  Google Scholar 

  44. Miller, G.I., Blum, R., Glennon, W.E., and Burton, A.L. 1960. Measurement of carboxymethylcellulase activity. Anal. Biochem. 2:127–132.

    Article  Google Scholar 

  45. Somogyí, M. 1952. Notes on sugar determination. J. Biol. Chem. 195:19–23.

    Google Scholar 

  46. Wayman, M., Parekh, R.S., and Parekh, S.R. 1987. Simultaneous saccharification and fermentation by mixed cultures of Brettarurniyces clausemii and Pichia stipitis R of SO2 – pre-hydrolysed wood. Biotech. Letters 9:435–440.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, W., Curry, C., Parekh, R. et al. Wood Hydrolysis by Cellulomonas Fimi Endoglucanase and Exogiucanase Coexpressed as Secreted Enzymes in Saccharomyces Cerevisiae. Nat Biotechnol 6, 713–719 (1988). https://doi.org/10.1038/nbt0688-713

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0688-713

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing