Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

MicroRNA gets down to business

An Erratum to this article was published on 06 May 2011

This article has been updated

Drugs targeting microRNAs lie some way off, but diagnostics look promising and commercial interest is growing.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2: miRNA biogenesis.

Katie Ris

Figure 3: Complete separation.

Change history

  • 07 December 2010

    In the version of the article originally published, reference 8 incorrectly listed Chang, D.Z. as the first author. It should have read Tsuda, N. The error has been corrected in the HMTL and PDF versions of the article.

References

  1. Lee, R.C., Feinbaum, R.L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    CAS  Article  Google Scholar 

  2. Monia, B.P. et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 3, 87–98 (2006).

    Article  Google Scholar 

  3. Sarnow, P. et al. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309, 1577–1581 (2005).

    Article  Google Scholar 

  4. Howard, K. Unlocking the money making potential of RNAi. Nat. Biotechnol. 21, 1441–1446 (2003).

    CAS  Article  Google Scholar 

  5. Schmidt, C. Negotiating the RNAi patent thicket. Nat. Biotechnol. 25, 273–275 (2007).

    CAS  Article  Google Scholar 

  6. Dutta, A. et al. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev. 21, 1025–1030 (2007).

    Article  Google Scholar 

  7. Takahashi, T. et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 64, 3753–3756 (2004).

    Article  Google Scholar 

  8. Tsuda, N. et al. Synthetic microRNA designed to target glioma-associated antigen 1 transcription factor inhibits division and induces late apoptosis in pancreatic tumor cells. Clin. Cancer Res. 12, 6557–6564 (2006).

    CAS  Article  Google Scholar 

  9. Schmittgen, T.D. et al. Expression profiling identifies miRNA signature in pancreatic cancer. Int. J. Cancer 120, 1046–1054 (2007).

    PubMed  PubMed Central  Google Scholar 

  10. Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005).

    CAS  Article  Google Scholar 

  11. Reinhart, B.J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906 (2000).

    CAS  Article  Google Scholar 

  12. Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838 (2001).

    CAS  Article  Google Scholar 

  13. Lau, N.C., Lim, L.P., Weinstein, E.G. & Bartel, D.P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862 (2001).

    CAS  Article  Google Scholar 

  14. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001).

    CAS  Article  Google Scholar 

  15. Lee, R.C. & Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864 (2001).

    CAS  Article  Google Scholar 

  16. Reinhart, B.J. et al. MicroRNAs in plants. Genes Dev. 16, 1616–1626 (2002).

    CAS  Article  Google Scholar 

  17. Rhoades, M.W. et al. Prediction of plant microRNA targets. Cell 110, 513–520 (2002).

    CAS  Article  Google Scholar 

  18. Calin, G.A. et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA 99, 15524–15529 (2002).

    CAS  Article  Google Scholar 

  19. Lee, Y. et al. The nuclear Rnase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003).

    CAS  Article  Google Scholar 

  20. Krutzfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685–689 (2005).

    Article  Google Scholar 

  21. Pfeffer, S. et al. Identification of virus-encoded microRNAs. Science 304, 734–736 (2004).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mack, G. MicroRNA gets down to business. Nat Biotechnol 25, 631–638 (2007). https://doi.org/10.1038/nbt0607-631

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0607-631

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing