A tough biodegradable elastomer


Biodegradable polymers have significant potential in biotechnology and bioengineering. However, for some applications, they are limited by their inferior mechanical properties and unsatisfactory compatibility with cells and tissues. A strong, biodegradable, and biocompatible elastomer could be useful for fields such as tissue engineering, drug delivery, and in vivo sensing. We designed, synthesized, and characterized a tough biodegradable elastomer from biocompatible monomers. This elastomer forms a covalently crosslinked, three-dimensional network of random coils with hydroxyl groups attached to its backbone. Both crosslinking and the hydrogen-bonding interactions between the hydroxyl groups likely contribute to the unique properties of the elastomer. In vitro and in vivo studies show that the polymer has good biocompatibility. Polymer implants under animal skin are absorbed completely within 60 days with restoration of the implantation sites to their normal architecture.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: stress–strain curves of PGS, vulcanized rubber, and P4HB.
Figure 2: Comparison of NIH 3T3 fibroblast cell morphology and number.
Figure 3: Comparison of growth rate of NIH 3T3 fibroblast cells in PGS () wells and PLGA (□) wells.
Figure 4: Change of thickness of the immune responses with time for PGS and PLGA.
Figure 5: Photomicrographs of rat skin.


  1. 1

    Peppas, N.A. & Langer, R. New challenges in biomaterials. Science 263, 1715–1720 (1994).

    CAS  Article  Google Scholar 

  2. 2

    Langer, R. Biomaterials: status, challenges, and perspectives. AIChE J. 46, 1286–1289 (2000).

    CAS  Article  Google Scholar 

  3. 3

    Lee, K.Y. et al. Controlling mechanical and swelling properties of alginate hydrogels independently by cross-linker type and cross-linking density. Macromolecules 33, 4291–4294 (2000).

    CAS  Article  Google Scholar 

  4. 4

    Temenoff, J.S., Athanasiou, K.A., LeBaron, R.G. & Mikos, A.G. Effect of poly(ethylene glycol) molecular weight on tensile and swelling properties of oligo(poly(ethylene glycol)fumarate) hydrogels for cartilage tissue engineering. J. Biomed. Mater. Res. 59, 429–437 (2002).

    CAS  Article  Google Scholar 

  5. 5

    van Hest, J.C.M. & Tirrell, D.A. Protein-based materials, toward a new level of structural control. Chem. Comm. 19, 1897–1904 (2001).

    Article  Google Scholar 

  6. 6

    Welsh, E.R. & Tirrell, D.A. Engineering the extracellular matrix: a novel approach to polymeric biomaterials. I. Control of the physical properties of artificial protein matrices designed to support adhesion of vascular endothelial cells. Biomacromolecules 1, 23–30 (2000).

    CAS  Article  Google Scholar 

  7. 7

    Urry, D.W. et al. Elastic protein-based polymers in soft tissue augmentation and generation. J. Biomater. Sci., Polym. Ed. 9, 1015–1048 (1998).

    CAS  Article  Google Scholar 

  8. 8

    Poirier, Y., Nawrath, C. & Somerville, C. Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. Bio/Technology 13, 142–150 (1995).

    CAS  PubMed  Google Scholar 

  9. 9

    Sodian, R. et al. Fabrication of a trileaflet heart valve scaffold from a polyhydroxyalkanoate biopolyester for use in tissue engineering. Tissue Eng. 6, 183–187 (2000).

    CAS  Article  Google Scholar 

  10. 10

    Katsarava, R. et al. Amino acid–based bioanalogous polymers. Synthesis and study of regular poly(ester amide)s based on bis(α-amino acid) α,ω-alkylene diesters, and aliphatic dicarboxylic acids. J. Polym. Sci. Part A: Polym. Chem. 37, 391–407 (1999).

    CAS  Article  Google Scholar 

  11. 11

    Kemnitzer, J. & Kohn, J. In Handbook of biodegradable polymers (eds Domb, A.J., Kost, J. & Wiseman, D.M.) 251–272 (Harwood Academic Publishers, Amsterdam; 1998).

    Google Scholar 

  12. 12

    Petsch, D. & Anspach, F.B. Endotoxin removal from protein solutions. J. Biotechnol. 76, 97–119 (2000).

    CAS  Article  Google Scholar 

  13. 13

    Erman, B. & Mark, J.E. In Science and technology of rubber (eds Mark, J.E., Burak, E. & Eirich, F.R.) 189–210 (Academic Press, San Diego, CA; 1994).

    Google Scholar 

  14. 14

    Voet, D. & Voet, J.G. Biochemistry (John Wiley & Sons, New York, 1995).

    Google Scholar 

  15. 15

    Stryer, L. Biochemistry (W.H. Freeman and Company, New York; 1995).

    Google Scholar 

  16. 16

    Fratzl, P. et al. Fibrillar structure and mechanical properties of collagen. J. Struct. Biol. 122, 119–122 (1998).

    CAS  Article  Google Scholar 

  17. 17

    Wang, J.L., Parnianpour, M., Shirazi-Adl, A. & Engin, A.E. Failure criterion of collagen fiber: viscoelastic behavior simulated by using load control data. Theor. Appl. Fract. Mech. 27, 1–12 (1997).

    CAS  Article  Google Scholar 

  18. 18

    Storey, R.F., Warren, S.C., Allison, C.J. & Puckett, A.D. Methacrylate-endcapped poly(d,l-lactide-co-trimethylene carbonate) oligomers. Network formation by thermal free-radical curing. Polymer 38, 6295–6301 (1997).

    CAS  Article  Google Scholar 

  19. 19

    Helminen, A., Korhonen, H. & Seppala, J.V. Biodegradable crosslinked polymers based on triethoxysilane terminated polylactide oligomers. Polymer 42, 3345–3353 (2001).

    CAS  Article  Google Scholar 

  20. 20

    March, J. Advanced organic chemistry (John Wiley & Sons, New York; 1992).

    Google Scholar 

  21. 21

    Liu, G., Hinch, B. & Beavis, A.D. Mechanisms for the transport of α,ω-dicarboxylates through the mitochondrial inner membrane. J. Biol. Chem. 271, 25338–25344 (1996).

    CAS  Article  Google Scholar 

  22. 22

    Grego, A.V. & Mingrone, G. Dicarboxylic acids, an alternate fuel substrate in parenteral nutrition: an update. Clin. Nutr. 14, 143–148 (1995).

    CAS  Article  Google Scholar 

  23. 23

    Mortensen, P.B. & Gregersen, N. The biological origin of ketotic dicarboxylic aciduria. In vivo and in vitro investigations of the omega-oxidation of C6-C16-monocarboxylic acids in unstarved, starved and diabetic rats. Biochim. Biophys. Acta 666, 394–404 (1981).

    CAS  Article  Google Scholar 

  24. 24

    Mortensen, P.B. C6–C10-dicarboxylic aciduria in starved, fat-fed and diabetic rats receiving decanoic acid or medium-chain triacylglycerol. An in vivo measure of the rate of β-oxidation of fatty acids. Biochim. Biophys. Acta 664, 349–355 (1981).

    CAS  Article  Google Scholar 

  25. 25

    Tamada, J. & Langer, R. The development of polyanhydrides for drug delivery applications. J. Biomater. Sci. Polym. Ed. 3, 315–353 (1992).

    CAS  Article  Google Scholar 

  26. 26

    Nagata, M. et al. Synthesis, characterization, and enzymatic degradation of network aliphatic copolyesters. J. Polym. Sci. Part A: Polym. Chem. 37, 2005–2011 (1999).

    CAS  Article  Google Scholar 

  27. 27

    Dupont-Gillain, C.C., Nysten, B. & Rouxhet, P.G. Collagen adsorption on poly(methyl methacrylate): net-like structure formation upon drying. Polym. Int. 48, 271–276 (1999).

    CAS  Article  Google Scholar 

  28. 28

    Sperling, L.H. Introduction to physical polymer science (John Wiley & Sons, New York; 1992).

    Google Scholar 

  29. 29

    Yamaguchi, S. Analysis of stress–strain curves at fast and slow velocities of loading in vitro in the transverse section of the rat incisor periodontal ligament following the administration of β-aminopropionitrile. Arch. Oral Biol. 37, 439–444 (1992).

    CAS  Article  Google Scholar 

  30. 30

    Komatsu, K. & Chiba, M. The effect of velocity of loading on the biomechanical responses of the periodontal ligament in transverse sections of the rat molar in vitro. Arch. Oral Biol. 38, 369–375 (1993).

    CAS  Article  Google Scholar 

  31. 31

    Chiba, M. & Komatsu, K. Mechanical responses of the periodontal ligament in the transverse section of the rat mandibular incisor at various velocities of loading in vitro. J. Biomech. 26, 561–570 (1993).

    CAS  Article  Google Scholar 

  32. 32

    Nagdi, K. Rubber as an engineering material: guideline for users (Hanser, Munich;1993).

    Google Scholar 

  33. 33

    Misof, K., Rapp, G. & Fratzl, P. A new molecular model for collagen elasticity based on synchrotron X- ray scattering evidence. Biophys. J. 72, 1376–1381 (1997).

    CAS  Article  Google Scholar 

  34. 34

    Lee, M.C. & Haut, R.C. Strain rate effects on tensile failure properties of the common carotid artery and jugular veins of ferrets. J. Biomech. 25, 925–927 (1992).

    CAS  Article  Google Scholar 

  35. 35

    Haut, R.C. The effect of a lathyritic diet on the sensitivity of tendon to strain rate. J. Biomech. Eng. 107, 166–174 (1985).

    CAS  Article  Google Scholar 

  36. 36

    Northup, S.J. & Cammack, J.N. Handbook of biomaterials evaluation (ed. von Recum, A.F.) 325–339 (Taylor & Francis, Philadelphia; 1999).

    Google Scholar 

  37. 37

    Cadee, J.A., Brouwer, L.A., den Otter, W., Hennink, W.E. & Van Luyn, M.J.A. A comparative biocompatibility study of microspheres based on crosslinked dextran or poly(lactic-co-glycolic)acid after subcutaneous injection in rats. J. Biomed. Mater. Res. 56, 600–609 (2001).

    CAS  Article  Google Scholar 

  38. 38

    van der Elst, M., Klein, C.P.A.T., de Blieck-Hogervorst, J.M., Patka, P. & Haarman, H.J.T.M. Bone tissue response to biodegradable polymers used for intramedullary fracture fixation: a long-term in vivo study in sheep femora. Biomaterials 20, 121–128 (1999).

    CAS  Article  Google Scholar 

  39. 39

    Jayachandran, K.N. & Chatterji, P.R. Synthesis of dense brush polymers with cleavable grafts. Eur. Polym. J. 36, 743–749 (2000).

    CAS  Article  Google Scholar 

  40. 40

    Laschewsky, A., Rekai, E.D. & Wischerhoff, E. Tailoring of stimuli-responsive water- soluble acrylamide and methacrylamide polymers. Macromol. Chem. Phys. 202, 276–286 (2001).

    CAS  Article  Google Scholar 

  41. 41

    Barrera, D.A., Zylstra, E., Lansbury, P.T., Jr. & Langer, R. Synthesis and RGD peptide modification of a new biodegradable copolymer: poly(lactic acid-co-lysine). J. Am. Chem. Soc. 115, 11010–11011 (1993).

    CAS  Article  Google Scholar 

  42. 42

    West, J.L. & Hubbell, J.A. Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules 32, 241–244 (1999).

    CAS  Article  Google Scholar 

  43. 43

    Mann, B.K., Gobin, A.S., Tsai, A.T., Schmedlen, R.H. & West, J.L. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials 22, 3045–3051 (2001).

    CAS  Article  Google Scholar 

  44. 44

    Hansen, M.B., Nielsen, S.E. & Berg, K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods 119, 203–210 (1989).

    CAS  Article  Google Scholar 

  45. 45

    National Institutes of Health. Principles of Laboratory Animal Care (NIH pub. no. 85-23, rev. 1985).

Download references


The authors thank Dr. David LaVan and Dr. Daniel Anderson for advice and discussions. We appreciate comments from Dr. David LaVan, Prof. Hiroyuki Ijima, and Ms. Sheryl Villa on the manuscript. This work was supported by NIH grant 5-R01-HL60435.

Author information



Corresponding author

Correspondence to Robert Langer.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, Y., Ameer, G., Sheppard, B. et al. A tough biodegradable elastomer. Nat Biotechnol 20, 602–606 (2002). https://doi.org/10.1038/nbt0602-602

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing