Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protection against anthrax toxin by recombinant antibody fragments correlates with antigen affinity

Abstract

The tripartite toxin produced by Bacillus anthracis is the key determinant in the etiology of anthrax. We have engineered a panel of toxin-neutralizing antibodies, including single-chain variable fragments (scFvs) and scFvs fused to a human constant κ domain (scAbs), that bind to the protective antigen subunit of the toxin with equilibrium dissociation constants (Kd) between 63 nM and 0.25 nM. The entire antibody panel showed high serum, thermal, and denaturant stability. In vitro, post-challenge protection of macrophages from the action of the holotoxin correlated with the Kd of the scFv variants. Strong correlations among antibody construct affinity, serum half-life, and protection were also observed in a rat model of toxin challenge. High-affinity toxin-neutralizing antibodies may be of therapeutic value for alleviating the symptoms of anthrax toxin in infected individuals and for medium-term prophylaxis to infection.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antibody constructs.
Figure 2: Amino acid sequence alignment of 14B7 scFv and related variants.
Figure 3: In vitro protection of RAW 264.7 mouse macrophages by antibodies.
Figure 4: In vivo protection data.

Similar content being viewed by others

References

  1. Meselson, M. et al. The Sverdlosk anthrax outbreak of 1979. Science 266, 1202–1208 (1994).

    Article  CAS  Google Scholar 

  2. Anonymous. Investigation of bioterrorism-related anthrax and interim guidelines for clinical evaluation of persons with possible anthrax. Morbid Mortal Weekly Rep. 50, 941–948 (2001).

  3. Turnbull, P.C. Anthrax vaccines: past, present, and future. Vaccine 9, 536–542 (1991).

    Article  Google Scholar 

  4. Dixon, T., Meselson, M., Guillemin, J. & Hanna, P. Anthrax. New Engl. J. Med. 341, 815–826 (1999).

    Article  CAS  Google Scholar 

  5. Jernigan, J. et al. Bioterrorism-related inhalational anthrax: the first 10 cases reported in the United States. Emerg. Infect. Dis. 7, 933–944 (2001).

    Article  CAS  Google Scholar 

  6. Brookmeyer, R., Blades, N., Hugh-Jones, M. & Henderson, D. The statistical analysis of truncated data: application to the Sverdlovsk anthrax outbreak. Biostatistics 2, 233–247 (2001).

    Article  CAS  Google Scholar 

  7. Bradley, K., Mogridge, J., Mourez, M., Collier, R. & Young, J. Identification of the cellular receptor for anthrax. Nature 414, 225–229 (2001).

    Article  CAS  Google Scholar 

  8. Leppla, S. Anthrax toxin. in Bacterial Protein Toxins, Vol. 145 (eds. Aktories, K. & Just, I.) 445–472 (Springer, Berlin, 2000).

    Chapter  Google Scholar 

  9. Mourez, M. et al. Designing a polyvalent inhibitor of anthrax toxin. Nat. Biotechnol. 19, 958–961 (2001).

    Article  CAS  Google Scholar 

  10. Little, S.F. et al. Characterization of lethal factor binding and cell receptor binding domains of protective antigen of Bacillus anthracis using monoclonal antibodies. Microbiology 142, 707–715 (1996).

    Article  CAS  Google Scholar 

  11. Sellman, B., Mourez, M. & Collier, R. Dominant-negative mutants of a toxin subunit: an approach to therapy of anthrax. Science 292, 695–697 (2001).

    Article  CAS  Google Scholar 

  12. Singh, Y., Khanna, H., Chopra, A. & Mehra, V. A dominant negative mutant of Bacillus anthracis protective antigen inhibits anthrax toxin in vivo. J. Biol. Chem. 276, 22090–22094 (2001).

    Article  CAS  Google Scholar 

  13. Little, S.F., Leppla, S.H. & Cora, E. Production and characterization of monoclonal antibodies to the protective antigen component of Bacillus anthracis toxin. Infect. Immun. 56, 1807–1813 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Little, S., Ivins, B., Fellows, P. & Friedlander, A. Passive protection by polyclonal antibodies against Bacillus anthracis infection in guinea pigs. Infect. Immun. 65, 5171–5175 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kobiler, D. et al. Efficiency of protection of guinea pigs against infection with Bacillus anthracis spores by passive immunization. Infect. Immun. 70, 544–550 (2002).

    Article  CAS  Google Scholar 

  16. Keller, M. & Stiehm, E. Passive immunity in prevention and treatment of infectious diseases. Clin. Micro. Rev. 13, 602–614 (2000).

    Article  CAS  Google Scholar 

  17. Casadevall, A. Antibodies for defense against biological attack. Nat. Biotechnol. 20, 114 (2002).

    Article  CAS  Google Scholar 

  18. Johnson, S. et al. Development of a humanized monoclonal antibody (MEDI-493) with potent in vitro and in vivo activity against respiratory syncitial virus. J. Infect. Dis. 176, 1215–1224 (1997).

    Article  CAS  Google Scholar 

  19. Pitt, M. et al. In vitro correlate of immunity in a rabbit model of inhalational anthrax. Vaccine 19, 4768–4773 (2001).

    Article  CAS  Google Scholar 

  20. Reuveny, S. et al. Search for correlates of protective immunity conferred by anthrax vaccine. Infect. Immun. 69, 2888–2893 (2001).

    Article  CAS  Google Scholar 

  21. Welkos, S., Little, S., Friedlander, A., Fritz, D. & Fellows, P. The role of antibodies to Bacillus anthracis and anthrax toxin components in inhibiting the early stages of infection by anthrax spores. Microbiology 147, 1677–1685 (2001).

    Article  CAS  Google Scholar 

  22. Fromant, M., Blanquet, S. & Plateau, P. Direct random mutagenesis of gene sized DNA fragments using polymerase chain reaction. Anal. Biochem. 224, 347–353 (1995).

    Article  CAS  Google Scholar 

  23. Stemmer, W.P.C. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389–391 (1994).

    Article  CAS  Google Scholar 

  24. Hayhurst, A. Improved expression characteristics of single chain Fv fragments when fused downstream of the E. coli maltose binding protein or upstream of a single immunoglobulin constant domain. Protein. Expr. Purif. 18, 1–10 (1999).

    Article  Google Scholar 

  25. Adams, G. et al. High affinity restricts the localization and tumor penetration of single-chain Fv antibodies. Cancer Res. 61, 4750–4755 (2001).

    CAS  Google Scholar 

  26. Carter, P. et al. Humanization of an anti-p185/HER2 antibody for human cancer therapy. Proc. Natl. Acad. Sci. USA 89, 4285–4289 (1992).

    Article  CAS  Google Scholar 

  27. Willuda, J. et al. Tumor targeting of mono-, di-, and tetravalent anti-p185HER2 miniantibodies multimerized by self associating peptides. J. Biol. Chem. 276, 14385–14392 (2001).

    Article  CAS  Google Scholar 

  28. Benhar, I. & Pastan, I. Identification of residues that stabilize the single-chain Fv of monoclonal antibodies B3. J. Biol. Chem. 270, 23373–23380 (1995).

    Article  CAS  Google Scholar 

  29. Helfrich, W. et al. Construction and characterization of a bispecific diabody for retargeting T cells to human carcinomas. Int. J. Cancer 76, 232–239 (1998).

    Article  CAS  Google Scholar 

  30. Nieba, L., Honegger, A., Krebber, C. & Pluckthun, A. Disrupting the hydrophobic patches at the antibody variable/constant domain interface: improved in vivo folding and physical characterization of an engineered scFv fragment. Protein Eng. 10, 435–444 (1997).

    Article  CAS  Google Scholar 

  31. Jermutus, L., Honegger, A., Schwesinger, F., Hanes, J. & Pluckthun, A. Tailoring in vitro evolution for protein affinity or stability. Proc. Natl. Acad. Sci. USA 98, 75–80 (2001).

    Article  CAS  Google Scholar 

  32. Milenic, D.E. et al. Construction, binding properties, metabolism, and tumor-targeting of a single-chain Fv derived from the pancarcinoma monoclonal antibody CC49. Cancer Res. 51, 6363–6371 (1991).

    CAS  PubMed  Google Scholar 

  33. Escuyer, V. & Collier, R.J. Anthrax protective antigen interacts with a specific receptor on the surface of CHO-K1 cells. Infect. Immun. 59, 3381–3386 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ivins, B., Ristroph, J. & Nelson, G. Influence of body weight on response of Fischer 344 rats to anthrax lethal toxin. Appl. Enviro. Micro. 55, 2098–2100 (1989).

    CAS  Google Scholar 

  35. Ezzell, J.W., Ivins, B.E. & Leppla, S.H. Immunoelectrophoretic analysis, toxicity, and kinetics of in vitro production of the protective antigen and lethal factor components of Bacillus anthracis toxin. Infect. Immun. 45, 761–767 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Krebber, A. et al. Reliable cloning of functional antibody variable domains from hybridomas and spleen cell repertoires employing a reengineered phage display system. J. Immunol. Methods 201, 35–55 (1997).

    Article  CAS  Google Scholar 

  37. Hayhurst, A. & Harris, W.J. Escherichia coli skp chaperone coexpression improves solubility and phage display of single-chain antibody fragments. Protein Expr. Purif. 15, 336–343 (1999).

    Article  CAS  Google Scholar 

  38. Harlow, E. & Lane, D. Antibodies: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1988).

    Google Scholar 

  39. Chen, G., Dubrawsky, I., Mendez, P., Georgiou, G. & Iverson, B.L. In vitro scanning saturation mutagenesis of all the specificity determining residues in an antibody binding site. Protein Eng. 12, 349–356 (1999).

    Article  CAS  Google Scholar 

  40. Pace, C.N. Measuring and increasing protein stability. Trends Biotechnol. 8, 93–98 (1990).

    Article  CAS  Google Scholar 

  41. Pace, C., Shirley, B. & Thomson, J. Measuring the conformational stability of a protein. in Protein Structure: A Practical Approach (ed. Creighton, T.) 311–330 (IRL, New York, 1989).

    Google Scholar 

  42. Varughese, M. et al. Internalization of a Bacillus anthracis protective antigen-c-Myc fusion protein mediated by cell surface anti-c-Myc antibodies. Molec. Med. 4, 87–95 (1998).

    Article  CAS  Google Scholar 

  43. Lin, Y.S. et al. Preclinical pharmacokinetics, interspecies scaling, and tissue distribution of a humanized monoclonal antibody against vascular endothelial growth factor. J. Pharm. Exp. Ther. 288, 371–378 (1999).

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the expert technical assistance of Robert Geiger. We particularly thank Mark Sharp and Robert Shade (Southwest Foundation for Biological Research) for help with the statistical analysis of the animal data. We also thank Andrew Hayhurst and Barrett Harvey (University of Texas at Austin) for many helpful discussions and Dr. Hayhurst for providing pMoPac16. This work was supported by grants from the Department of Defense through Measurement and Signature Intelligence, the US Army ARO/MURI program, and in connection with contract number DAAD17-01-D-0001 with the US Army Research Laboratory. The views and conclusions contained in this document/presentation are those of the authors and should not be interpreted as presenting the official policies or position, either expressed or implied, of the US Army Research Laboratory or the US Government unless so designated by other authorized documents. Citation of manufacturer or trade names does not constitute an official endorsement or approval of the use thereof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Georgiou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maynard, J., Maassen, C., Leppla, S. et al. Protection against anthrax toxin by recombinant antibody fragments correlates with antigen affinity. Nat Biotechnol 20, 597–601 (2002). https://doi.org/10.1038/nbt0602-597

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0602-597

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing