Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Excision of selectable marker genes from transgenic plants

An Erratum to this article was published on 01 August 2002

Abstract

Selectable marker genes are required to ensure the efficient genetic modification of crops. Economic incentives and safety concerns have prompted the development of several strategies (site-specific recombination, homologous recombination, transposition, and co-transformation) to eliminate these genes from the genome after they have fulfilled their purpose. Recently, chemically inducible site-specific recombinase systems have emerged as valuable tools for efficiently regulating the excision of transgenes when their expression is no longer required. The implementation of these strategies in crops and their further improvement will help to expedite widespread public acceptance of agricultural biotechnology

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recognition sites for recombinases shown to function in plants share a similar design.
Figure 2: Modes of site-specific recombinase action in vivo.

Similar content being viewed by others

References

  1. Ebinuma, H., Sugita, K., Matsunaga, E. & Yamakado, M. Selection of marker-free transgenic plants using the isopentenyltransferase gene. Proc. Natl. Acad. Sci. USA 94, 2117–2121 (1997).

    Article  CAS  Google Scholar 

  2. Kunkel, T., Niu, Q.-W., Chan, Y.-S. & Chua, N.-H. Inducible isopentenyltransferase as a high-efficiency marker for plant transformation. Nat. Biotechnol. 17, 916–919 (1999).

    Article  CAS  Google Scholar 

  3. Zuo, J., Niu, Q.-W., Ikeda, Y. & Chua, N.-H. Marker-free transformation: increasing transformation frequency by the use of regeneration-promoting genes. Curr. Opin. Biotechnol., in press (2002).

  4. Hohn, B., Levy, A.A. & Puchta, H. Elimination of selection markers from transgenic plants. Curr. Opin. Biotechnol. 12, 139–143 (2001).

    Article  CAS  Google Scholar 

  5. Ow, D. Marker genes. in Joint FAO/WHO Expert Consultation on Foods Derived from Biotechnology, World Health Organization, May 29–June 2, 2000 (World Health Organization, Geneva, Switzerland, 2000). http://www.who.int/fsf/GMfood/Consultation_May2000/Biotech_00_14.pdf.

    Google Scholar 

  6. Ebinuma, H. et al. Systems for the removal of a selection marker and their combination with a positive marker. Plant Cell Rep. 20, 383–392 (2001).

    Article  CAS  Google Scholar 

  7. Daniell, H., Khan, M.S. & Allison, L. Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci. 7, 84–91 (2002).

    Article  CAS  Google Scholar 

  8. Maliga, P. Engineering the plastid genome of higher plants. Curr. Opin. Plant Biol. 5, 164–172 (2002).

    Article  CAS  Google Scholar 

  9. Ow, D.W. Recombinase-directed plant transformation for the post genomic era. Plant Mol. Biol. 48, 183–200 (2002).

    Article  CAS  Google Scholar 

  10. Hoff, T., Schnorr, K.M. & Mundy, J. A recombinase-mediated transcriptional induction system in transgenic plants. Plant Mol. Biol. 45, 41–49 (2001).

    Article  CAS  Google Scholar 

  11. Luo, H., Lyznik, L.A., Gidoni, D. & Hodges, T.K. FLP-mediated recombination for use in hybrid plant production. Plant J. 23, 423–430 (2000).

    Article  CAS  Google Scholar 

  12. Keenan, R.J. & Stemmer, W.P.C. Nontransgenic crops from transgenic plants. Nat. Biotechnol. 20, 215–216 (2002).

    Article  CAS  Google Scholar 

  13. Lu, H.-J., Zhou, X.R., Gong, Z.-X. & Upadhyaya, N.M. Generation of selectable marker-free transgenic rice using double right-border (DRB) binary vectors. Aust. J. Plant Physiol. 28, 241–248 (2001).

    CAS  Google Scholar 

  14. Zubko, E., Scutt, C. & Meyer, P. Intrachromosomal recombination between attP regions as a tool to remove selectable marker genes from tobacco transgenes. Nat. Biotechnol. 18, 442–445 (2000).

    Article  CAS  Google Scholar 

  15. Zuo, J., Niu, Q.-W., Møller, S.G. & Chua, N.-H. Chemical-regulated, site-specific DNA excision in transgenic plants. Nat. Biotechnol. 19, 157–161 (2001).

    Article  CAS  Google Scholar 

  16. Gleave, A.P., Mitra, D.S., Mudge, S.R. & Morris, B.A.M. Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene. Plant Mol. Biol. 40, 223–235 (1999).

    Article  CAS  Google Scholar 

  17. Dale, E.C. & Ow, D.W. Gene transfer with the subsequent removal of the selection gene from the host genome. Proc. Natl. Acad. Sci. USA 88, 10558–10562 (1991).

    Article  CAS  Google Scholar 

  18. Russell, S.H., Hoopes, J.L. & Odell, J.T. Directed excision of a transgene from the plant genome. Mol. Gen. Genet. 234, 49–59 (1992).

    CAS  PubMed  Google Scholar 

  19. Lyznik, L.A., Rao, K.V. & Hodges, T.K. FLP-mediated recombination of FRT sites in the maize genome. Nucleic Acids Res. 24, 3784–3789 (1996).

    Article  CAS  Google Scholar 

  20. Sugita, K., Kasahara, T., Matsunaga, E. & Ebinuma, H. A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency. Plant J. 22, 461–469 (2000).

    Article  CAS  Google Scholar 

  21. Ebinuma, H. & Komamine, A. MAT (Multi-Auto-Transformation) Vector System. The oncogenes of Agrobacterium as positive markers for regeneration and selection of marker-free transgenic plants. In Vitro Cell. Dev. Biol. Plant 37, 103–113 (2001).

    Article  CAS  Google Scholar 

  22. Srivastava, V., Anderson, O.A. & Ow, D.W. Single-copy transgenic wheat generated through the resolution of complex integration patterns. Proc. Natl. Acad. Sci. USA 96, 11117–11121 (1999).

    Article  CAS  Google Scholar 

  23. Corneille, S., Lutz, K., Svab, Z. & Maliga, P. Efficient elimination of selectable marker genes from the plastid genome by the CRE–lox site-specific recombination system. Plant J. 27, 171–178 (2001).

    Article  CAS  Google Scholar 

  24. Hajdukiewicz, P.T.J., Gilbertson, L. & Staub, J.M. Multiple pathways for Cre/lox-mediated recombination in plastids. Plant J. 27, 161–170 (2001).

    Article  CAS  Google Scholar 

  25. Thyagarajan, G., Guimaraes, M.J., Groth, A.C. & Calos, M.P. Mammalian genomes contain active recombinase recognition sites. Gene 244, 47–54 (2000).

    Article  CAS  Google Scholar 

  26. Schmidt, E.E., Taylor, D.S., Prigge, J.R., Barnett, S. & Capecchi, M. Illegitimate Cre-dependent chromosome rearrangements in transgenic mouse spermatids. Proc. Natl. Acad. Sci. USA 97, 13702–13707 (2000).

    Article  CAS  Google Scholar 

  27. Loonstra, A. et al. Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells. Proc. Natl. Acad. Sci. USA 98, 9209–9214 (2001).

    Article  CAS  Google Scholar 

  28. Zuo, J. & Chua, N.-H. Chemical-inducible systems for regulated expression of plant genes. Curr. Opin. Biotechnol. 11, 146–151 (2000).

    Article  CAS  Google Scholar 

  29. Iamthan, S. & Day, A. removal of antibiotic resistance genes from transgenic tobacco plastids. Nat. Biotechnol. 18, 1172–1176 (2000).

    Article  Google Scholar 

  30. Srivastava, V. & Ow, D.W. Single-copy primary transformamts of maize obtained through the co-introduction of a recombinase-expressing construct. Plant Mol. Biol. 46, 561–566 (2001).

    Article  CAS  Google Scholar 

  31. Ziemienowicz, A., Tinland, B., Bryant, J., Gloeckler, V. & Hohn, B. Plant enzymes but not Agrobacterium VirD2 mediate T-DNA ligation in vitro. Mol. Cell. Biol. 20, 6317–6322 (2000).

    Article  CAS  Google Scholar 

  32. Vergunst, A.C. et al. VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science 290, 979–982 (2000).

    Article  CAS  Google Scholar 

  33. Davies, G.J., Kilby, N.J., Riou-Khamlichi, C. & Murray, J.A.H. Somatic and germinal inheritance of an FLP-mediated deletion in transgenic tobacco. J. Exp. Bot. 50, 1447–1456 (1999).

    Article  CAS  Google Scholar 

  34. Gidoni, D. et al. Embryonal recombination and germline inheritance of recombined FRT loci mediated by constitutively expressed FLP in tobacco. Euphytica 121, 145–156 (2001).

    Article  CAS  Google Scholar 

  35. Buchholz, F. & Stewart, A.F. Alteration of Cre recombinase site specificity by substrate-linked protein evolution. Nat. Biotechnol. 19, 1047–1052 (2001).

    Article  CAS  Google Scholar 

  36. Sclimenti, C.R., Thayagarajan, B. & Calos, M.P. Directed evolution of a recombinase for improved genomic integration at a native human sequence. Nucl. Acids Res. 29, 5044–5051.

  37. Santoro, S.W. & Schultz, P.G. Directed evolution of the site specificity of Cre recombinase. Proc. Natl. Acad. Sci. USA 99, 4185–4190 (2002).

    Article  CAS  Google Scholar 

  38. Baszczynski, C.L. et al. Novel nucleic acid sequence encoding FLP recombinase. US patent 6,175,058 (2001).

  39. Lorbach, E., Christ, N., Schwikardi, M. & Dröge, P. Site-specific recombination in human cells catalyzed by phage λ integrase mutants. J. Mol. Biol. 296, 1175–1181 (2000).

    Article  CAS  Google Scholar 

  40. Urwin, P., Li, Y., Martin, H., Atkinson, H. & Gilmartin, P.M. Functional characterization of the EMCV IRES in plants. Plant J. 24, 583–589 (2000).

    Article  CAS  Google Scholar 

  41. Kumar, S. & Fladung, M. Controlling transgene integration in plants. Trends Plant Sci. 6, 155–159 (2001).

    Article  CAS  Google Scholar 

  42. Bibikova, M. et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol. Cell. Biol. 21, 289–297 (2001).

    Article  CAS  Google Scholar 

  43. van Duyne, G.D. A structural view of Cre-loxP site-specific recombination. Annu. Rev. Biophys. Biomol. Struct. 30, 87–104 (2001).

    Article  CAS  Google Scholar 

  44. Guo, H. et al. Group II introns designed to insert into therapeutically relevant DNA target sites in human cells. Science 289, 452–457 (2000).

    Article  CAS  Google Scholar 

  45. Kuiper, H.A., Kleter, G.A., Noteborn, H.P.J.M. & Kok, E.J. Assessment of the food safety issues related to genetically modified foods. Plant J. 27, 503–528 (2001).

    Article  CAS  Google Scholar 

  46. Goddijn, O.J.M., Schouten, P.M.V., Schilperoort, R.A. & Hoge, J.H.C. A chimeric tryptophan decarboxylase gene as a novel selectable marker in plant cells. Plant Mol. Biol. 22, 907–912 (1993).

    Article  CAS  Google Scholar 

  47. Joersbo, M. & Okkels, F.T. A novel principle for selection of transgenic plant cells: positive selection. Plant Cell Rep. 16, 219–221 (1996).

    Article  CAS  Google Scholar 

  48. Haldrup, A., Petersen, S.G. & Okkels, F.T. The xylose isomerase gene from Thermoanaerobacterium thermosulfurogenes allows effective selection of transgenic plant cells using D-xylose as the selection agent. Plant Mol. Biol. 37, 287–296 (1998).

    Article  CAS  Google Scholar 

  49. Joersbo, M. et al. Analysis of mannose selection used for transformation of sugar beet. Mol. Breed. 4, 111–117 (1998).

    Article  CAS  Google Scholar 

  50. Qin, M., Bayley, C., Stockton, T. & Ow, D.W. Cre recombinase-mediated site-specific recombination between plant chromosomes. Proc. Natl. Acad. Sci. USA 91, 1706–1710 (1994).

    Article  CAS  Google Scholar 

  51. O'Keefe, D.P. et al. Plant expression of a bacterial cytochrome P450 that catalyzes activation of a sulfonylurea pro-herbicide. Plant Physiol. 105, 473–482 (1994)

    Article  CAS  Google Scholar 

  52. Næstaed, H. et al. A bacterial haloalkane dehalogenase gene as a negative selectable marker in Arabidopsis. Plant J. 18, 571–576 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Paula Duque and Diana Horvath for critical evaluation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-Hai Chua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hare, P., Chua, NH. Excision of selectable marker genes from transgenic plants. Nat Biotechnol 20, 575–580 (2002). https://doi.org/10.1038/nbt0602-575

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0602-575

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing