Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Potential for the environmental impact of transgenic crops

An Erratum to this article was published on 01 August 2002

Abstract

In recent years, there has been increasing interest in how changes in agricultural practice associated with the introduction of particular genetically modified (GM) crops might indirectly impact the environment. There is also interest in any effects that might be associated with recombinant and novel combinations of DNA passing into the environment, and the possibility that they may be taken up by microorganisms or other live biological material. From the current state of knowledge, the impact of free DNA of transgenic origin is likely to be negligible compared with the large amount of total free DNA. We can find no compelling scientific arguments to demonstrate that GM crops are innately different from non-GM crops. The kinds of potential impacts of GM crops fall into classes familiar from the cultivation of non-GM crops (e.g., invasiveness, weediness, toxicity, or biodiversity). It is likely, however, that the novelty of some of the products of GM crop improvement will present new challenges and perhaps opportunities to manage particular crops in creative ways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kessler, C. & Economides, I. (eds). EC-Sponsored Research on Safety of Genetically Modified Organisms. http://europa.eu.int/comm/research/quality-of-life/gmo/.

  2. James, C.A. Global Review of Commercialized Transgenic Crops, 2001, ISAAA Briefs No. 24 (ISAAA, Ithaca, NY, 2001).

    Google Scholar 

  3. National Research Council. Genetically Modified Pest Protected Plants: Science and Regulation (National Research Council, National Academy Press, Washington, DC, 2000).

  4. Losey, J.E., Rayor, L.S. & Carter, M.E. Transgenic pollen harms monarch larvae. Nature 399, 214 (1999).

    Article  CAS  Google Scholar 

  5. Sears, M.K. et al. Impact of Bt corn pollen on monarch butterfly populations: A risk assessment. Proc. Natl. Acad. Sci. USA 98, 11937–11942 (2001).

    Article  CAS  Google Scholar 

  6. Zangerl, A.R. et al. Effects of exposure to event 176 Bacillus thuringiensis corn pollen on monarch and black swallowtail caterpillars under field conditions. Proc. Natl. Acad. Sci. USA 98, 11908–11912 (2001).

    Article  CAS  Google Scholar 

  7. Hilbeck, A., Moar, W.J., Pusztai-Carey, M., Filippini, A. & Bigler, F. Toxicity of Bacillus thuringiensis Cry1Ab toxin to the predator Chrysoperla carnea (Neuroptera: Chrysopidae). Environ. Entomol. 27, 1255–1263 (1998).

    Article  CAS  Google Scholar 

  8. Hilbeck, A. et al. Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development time of immature Chrysoperla carnea (Neuroptera: Chrysopidae). Environ. Entomol. (1998).

  9. US Environmental Protection Agency. Sets of scientific issues being considered by the Environmental Protection Agency regarding Bt plant-pesticides risk and benefit assessments (SAP Report no. 2000-07, FIFRA Scientific Advisory Panel Meeting, October 18–20, 2000) (EPA, Washington, DC, 2000). http://www.epa.gov/scipoly/sap/2000/october/octoberfinal.pdf.

  10. Hoy, C.W. et al. Naturally occurring biological controls in genetically engineered crops. in Conservation Biological Control (ed. Barbosa, P.) 185–205 (Academic Press, London, 1998).

    Chapter  Google Scholar 

  11. Pimental, D.S. & Raven, P. Bt corn pollen impacts on nontarget Lepidoptera: assessment of effects in nature. Proc. Natl. Acad. Sci. USA. 97, 8198–8199 (2000).

    Article  Google Scholar 

  12. Carrièrre, Y. et al. Large-scale management of insect resistance to transgenic cotton in Arizona: Can transgenic insecticidal crops be sustained? J. Econ. Entomol. 94, 315–325 (2001).

    Article  Google Scholar 

  13. Saxena, D. & Stotzky, G. Insecticidal toxin from Bacillus thuringiensis is released from roots of transgenic BT corn in vitro and in situ. FEMS Microbial Ecol. 33, 35–39 (2000).

    Article  CAS  Google Scholar 

  14. Stotzky, G. Persistence and biological activity in soil of insecticidal proteins from Bacillus thuringiensis and of bacterial DNA bound on clays and humic acids. J. Environ. Qual. 29, 691–705 (2000).

    Article  CAS  Google Scholar 

  15. Head, G., Surber, J.B., Watson, J.A., Martin, J.W. & Duan, J.J. No detection of Cry1Ac protein in soil after multiple years of transgenic Bt cotton (Bollgard) use. Environ. Entomol. 31, 30–36 (2002).

    Article  CAS  Google Scholar 

  16. Williamson, M. Invaders, weeds and the risk from genetically manipulated organisms. Experimentia 49, 219–224 (1993).

    Article  Google Scholar 

  17. Luby, J.J. & McNichol, R.F. Gene flow from cultivated to wild raspberries in Scotland: developing a basis for risk assessment for testing and deployment of transgenic cultivars. Theor. Appl. Genet. 90, 1133–1137 (1995).

    Article  CAS  Google Scholar 

  18. Baker H.G. The evolution of weeds. Annu. Rev. Ecol. Systematics 5, 1–24 (1974).

    Article  Google Scholar 

  19. Fitter A., Perrins J. & Williamson M. Weed probability challenged. Biotechnology (NY) 8, 473 (1990).

    Google Scholar 

  20. Williamson, M., Perrings, J. & Fitter, A. Releasing genetically engineered plants: present proposals and possible hazards. Trends Ecol. Evol. 5, 417–419 (1990).

    Article  CAS  Google Scholar 

  21. Ammann, K., Jacot, Y. & Al Mazyad, R. Weediness in the light of new transgenic crops and their potential hybrids. Zeitschrift Pflanzenkrankheiten Pflanzenschutz J. Plant Dis. 17, 19–29 (2000).

    Google Scholar 

  22. Keeler, K.H., Turner, C.E. & Bolick, M.R. Movement of crop transgenes into wild plants. in Herbicide-Resistant Crops—Agricultural, Environmental, Economic, Regulatory, and Technical Aspects (ed. Duke, S.O.) 303–330 (Lewis Publishers, London, 1996).

    Google Scholar 

  23. Boudry, P., Morchen, M., Saumitou-Laprade, P., Vernet, P. & Van Dijk, H. The origin and evolution of weed beets: consequences for the breeding and release of herbicide-resistant transgenic sugar beets. Theor. Appl. Genet. 87, 471–478 (1993).

    Article  CAS  Google Scholar 

  24. National Research Council. Field Testing Genetically Modified Organisms: Framework for Decision. (National Academy Press, Washington DC, 1989).

  25. Lavigne, C. et al. A pollen-dispersal experiment with transgenic oilseed rape. Estimation of the average pollen dispersal of an individual plant within a field. Theor. Appl. Genet. 96, 886–896 (1998).

    Article  Google Scholar 

  26. Hails, R.S., Reeds, M., Kohn, D.D. & Crawley, M.J. Burial and seed survival in Brassica napus subsp. Oleifera and Sinapis arvensis including a comparison of transgenic and non-transgenic lines of the crop. Proc. R. Soc. Lond. B Biol. Sci. 264, 1–7 (1997).

    Article  CAS  Google Scholar 

  27. Sweet, J.B. & Shepperson, R. The impact of releases of genetically modified herbicide tolerant oilseed rape in UK. Acta Horticult. 459, 225–234 (1997).

    Google Scholar 

  28. Snow, A.A., Andersen, B. & Jorgensen, R.B. Costs of transgenic herbicide resistance introgressed from Brassica napus into weedy B. rapa. Mol. Ecol. 8, 605–615 (1999).

    Article  Google Scholar 

  29. Crawley, M.J., Brown, S.L., Hails, R.S., Kohn, D.D. & Rees, M. Transgenic crops in natural habitats. Nature 409, 682–683 (2001).

    Article  CAS  Google Scholar 

  30. Lutman, P. (ed.). Gene Flow and Agriculture: Relevance for Transgenic Crops (BCPC Symposium Proceedings no. 72, Keele Proceedings) (British Crop Protection Council, London, 1999).

    Google Scholar 

  31. Squire, G.R., Crawford, J.W., Ramsay, G., Thompson, C. & Bown, J. Gene flow at the landscape level. in Gene Flow and Agriculture: Relevance for Transgenic Crops (ed. Lutman, P.W.) 57–64 (British Crop Protection Council, London, 1999).

    Google Scholar 

  32. Ellstrand, N.C., Prentice, H.C. & Hancock, J. Gene flow and introgression from domesticated plants into their wild relatives. Annu. Rev. Ecol. System 30, 539–563 (1999).

    Article  Google Scholar 

  33. Raybould, A.F. & Gray, A.J. Genetically modified crops and hybridisation with wild relatives: a UK perspective. J. Appl. Ecol. 30, 199–219 (1993).

    Article  Google Scholar 

  34. Sheffler, J.A. & Dale, P.J. Opportunities for gene transfer from transgenic oilseed rape (Brassica napus) to related species. Trans. Res. 3, 263–278 (1994).

    Article  Google Scholar 

  35. Scheffler, J.A., Parkinson, A. & Dale, P.J. Evaluating the effectiveness of isolation distances for field plots of oilseed rape (Brassica napus) using a herbicide-resistance transgene as a selectable marker. Plant Breed. 14, 317–321 (1995).

    Article  Google Scholar 

  36. Ramachandran, S., Buntin, D., All, J.N., Raymer, P.L. & Stewart, C.N. Intraspecific competition of an insect-resistant transgenic canola in seed mixtures. Agron. J. 92, 368–374 (2000).

    Article  Google Scholar 

  37. Stewart, C.N., All, J.N., Raymer, P.L. & Ramachandran, S. Increased fitness of transgenic insecticidal rapeseed under insect selection pressure. Mol. Ecol. 6, 773–779 (1997).

    Article  Google Scholar 

  38. Giddings, G. Modelling the spread of pollen from Lolium perenne. The implications for the release of wind-pollinated transgenics. Theor. Appl. Genet. 100, 971–974 (2000).

    Article  Google Scholar 

  39. Orson, J. Gene stacking in herbicide tolerant oilseed rape: lessons from the North American experience (English Nature Reports no. 443) (English Nature, London, 2002).

  40. Moyes, C.L. et al. Barriers to gene flow from oilseed rape (Brassica napus) into populations of Sinapis arvensis. Mol. Ecol. 11, 103–112 (2002)

    Article  CAS  Google Scholar 

  41. Senior, I.J. & Dale, P.J. Herbicide tolerant crops in agriculture: oilseed rape as a case study. Plant Breed., 121, 97–101 (2002).

    Article  Google Scholar 

  42. Pratley, J., Baines, P., Eberbach, P., Incenrti, M. & Broster, J. Glyphosate Resistance in Annual Ryegrass. Proceedings of the 11th Conference of the Grassland Society of New South Wales, Australia. (The Grassland Society of NSW, Wagga, Wagga, 1996).

  43. VanGessel, M.J. Glyphosate-resistant horseweed from Delaware. Weed Sci. 49, 703–705 (2001).

    Article  CAS  Google Scholar 

  44. Raymond, M, Callaghan, A., Fort, P. & Pasteur, N. Worldwide migration of amplified insecticide resistance genes in mosquitoes. Nature 350, 151–153 (1991).

    Article  CAS  Google Scholar 

  45. Gould, F., Kennedy, G.G. & Johnson, M.T. Effects of natural enemies on the rate of herbivore adaptation to resistant host plants. Entomol. Experiment. Applicata 58, 1–14 (1991).

    Article  Google Scholar 

  46. Gould, F. Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu. Rev. Entomol. 43, 701–726 (1998).

    Article  CAS  Google Scholar 

  47. Gould, F. Testing Bt refuge strategies in the field. Nat. Biotechnol. 18, 266–267 (2000).

    Article  CAS  Google Scholar 

  48. Shelton, A.M., Zhao, J.-Z & Roush, R.T. Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annu. Rev. Entomol. 47, 845–881 (2002).

    Article  CAS  Google Scholar 

  49. Alstad, D.N. & Andow, D.A. Managing the evolution of insect resistance to transgenic plants. Science 268, 1894–1896 (1995).

    Article  CAS  Google Scholar 

  50. Roush, R.T. Two-toxin strategies for management of insecticidal transgenic crops: can pyramiding succeed where pesticide mixtures have not? Philos. Trans. R. Soc. Lond. B Biol. Sci. 353, 1777–1786 (1998).

    Article  CAS  Google Scholar 

  51. Dove, A. Survey raises concerns about Bt resistance management. Nat. Biotechnol. 19, 293–294 (2001).

    Article  CAS  Google Scholar 

  52. UK Agriculture and Environment Biotechnology Commission. Crops on Trial (AEBC Report no. 21, September 2001, DTI Pub. 5650/2k/08/01/NP, URN 01/1083) (UK Agriculture and Environment Biotechnology Commission, London, 2001).

  53. Burnside, O.C. An agriculturalist's viewpoint of risks and benefits of herbicide-resistant cultivars. in Herbicide-Resistant Crops—Agricultural, Environmental, Economic, Regulatory, and Technical Aspects (ed. Duke, S.O) 391–406 (Lewis Publishers, London, 1996).

  54. Giaquinta, R.T. An industry perspective on herbicide tolerant crops. Weed Technol. 6, 640 (1992).

    Article  Google Scholar 

  55. Altieri, M.A. The ecological impacts of transgenic crops on agroecosystem health. Ecosystem Health 6, 13–23 (2000).

    Google Scholar 

  56. Radosevich, S.R., Ghersa, C.M. & Comstock, G. Concerns a weed scientist might have about herbicide-tolerant crops. Weed Technol. 6, 635 (1992).

    Article  CAS  Google Scholar 

  57. Heimlich, R.E. et al. Adoption of genetically engineered seed in US agriculture: implication for pesticide use (USDA Publication sld001) (USDA, Washington, DC, 2000). http://www.ers.usda.gov/Emphases/Harmony/fft/sld001.htm.

  58. United States Department of Agriculture. Genetically engineered crops: has adoption reduced pesticide use? Agricultural Outlook August (2000). http://www.ers.usda.gov/publications/agoutlook/aug2000/ao273f.pdf

  59. Anonymous. GM crops reduce pesticide use. AgBiotech Bulletin 9, Issue 6, August (2001). http://www.agwest.sk.ca/bulletin/abb_aug01.pdf

  60. Trewavas, A. & Leaver, C. Is opposition to GM crops science or politics? An investigation into the arguments that GM crops pose a particular threat to the environment. EMBO Reports 2, 455 (2001). http://www.emboreports.oupjournals.org/cgi/content/full/2/6/455

    Article  CAS  Google Scholar 

  61. Canola Council of Canada. An Agronomic and Economic Assessment of Transgenic Canola (Canola Council of Canada, 2001). http://www.canola-council.org/production/gmo_toc.html

  62. Doerfler, W. & Schubbert, R. Uptake of foreign DNA from the environment: the gastrointestinal tract and the placenta as portals of entry. Weiner Klinische Wochenschrif 110-2, 40–44 (1998).

    Google Scholar 

  63. Department for Environment, Food and Rural Affairs. Review of knowledge of the potential impacts of GMOs on organic agriculture. in press (2002).

  64. Widmer, F., Seidler, R.J. & Watrud, L.S. Sensitive detection of transgenic plant marker gene persistence in soil microcosms. Mol. Ecol. 5, 603–613 (1996).

    Article  CAS  Google Scholar 

  65. Paget, E., Lebrun, M., Freyssinet, G. & Simonet, P. The fate of recombinant plant DNA in soil. Euro. J. Soil Biol. 34, 81–88 (1998).

    Article  CAS  Google Scholar 

  66. McDonald, I.R., Riley, P.W., Sharp, R.J. & McCarthy, A.J. Survival of plasmid-containing Bacillus subtilis released into mushroom compost. Microb. Ecol. 36, 51–59 (1998).

    Article  CAS  Google Scholar 

  67. Amner, W., McCarthy, A.J. & Edwards, C. Quantitative assessment of factors affecting the recovery of indigenous and released thermophilic bacteria from compost. Appl. Environ. Microbiol. 54, 3107–3112 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Smalla, K. et al. Exogenous isolation of antibiotic resistance plasmids from piggery manure slurries reveals a high prevalence and diversity of IncQ-like plasmids. Appl. Environ. Microbiol. 66, 4854–4862 (2000).

    Article  CAS  Google Scholar 

  69. Gotz, A. et al. Detection and characterisation of broad-host-range plasmids in environmental bacteria by PCR. Appl. Environ. Microbiol. 62, 2621–2628 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Gotz, A. & Smalla, K. Manure enhances plasmid mobilisation and survival of Pseudomonas putida introduced into field soil. Appl. Environ. Microbiol. 63, 1980–1986 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Einspanier, R. et al. The fate of forage plant DNA in farm animals: a collaborative case study investigating cattle and chicken fed recombinant plant material. Euro. Food Res. Technol. 212, 129–134 (2001).

    Article  CAS  Google Scholar 

  72. McAllan, A.B. The degradation of nucleic acids in, and removal of breakdown products from, the small intestine of steers. Brit. J. Nutrition 44, 99–113 (1980).

    Article  CAS  Google Scholar 

  73. McAllan, A.B. The fate of nucleic acids in ruminants. Proc. Nutrition Soc. 41, 309–317 (1982).

    Article  CAS  Google Scholar 

  74. Harrison, L.A. et al. The expressed protein in glyphosate-tolerant soybeans, 5-enolpruvl-shikimate-3-phosphate synthase from Agrobacterium sp. is rapidly digested in vitro and is not toxic in acutely gavaged mice. J. Nutr. 126, 728–740 (1996).

    Article  CAS  Google Scholar 

  75. Morrison, M. Do ruminal bacteria exchange genetic material? J. Dairy Sci. 79, 1476–1486 (1996).

    Article  CAS  Google Scholar 

  76. Mercer, D.K., Melville, C.M., Scott, K.P. & Flint, H.J. Natural genetic transformation in the rumen bacterium Streptococcus bovis JB1. FEMS Microbiol. Lett. 179, 485–490 (1999).

    Article  CAS  Google Scholar 

  77. McConnell, M.A., Mercer, A.A. & Tannock, G.W. Transfer of plasmid pAM1 between members of the normal microflora inhabiting the murine digestive tract and modification of the plasmid in a Lactobacillus reuteri host. Microb. Ecol. Health Dis. 4, 343–355 (1991).

    Article  Google Scholar 

  78. Flint, H.J. & Thomson, A.M. Deoxyribonuclease activity in rumen bacteria. Lett. Appl. Microbiol. 11, 18–21 (1990).

    Article  CAS  Google Scholar 

  79. Chiter, A., Forbes, J.M. & Blair, G.E. DNA stability in plant tissues: implications for the possible transfer of genes from genetically modified food. FEBS Lett. 481, 164–168 (2000).

    Article  CAS  Google Scholar 

  80. Forbes, J.M. Blair, G.E., Chiter, A., & Perks, A. Effect of Feed Processing Conditions on DNA Fragmentation. Section 5: Scientific Report 376. (UK Ministry of Agriculture, Fisheries & Food, London; 1998).

    Google Scholar 

  81. Hupfer, C., Mayer, J., Hotzel, H., Sachse, K. & Engel, K.-H. The effect of ensiling on PCR-based detection of genetically modified Bt maize. Europ. Food Res. Technol. 209, 301–304 (1999).

    Article  CAS  Google Scholar 

  82. Duggan, P.S., Chambers, P.A., Heritage, J. & Forbes, J.M. Survival of free DNA encoding antibiotic resistance from transgenic maize and the transformation activity of DNA in ovine saliva, ovine rumen fluid and silage effluent. FEMS Microbiol. Lett. 191, 71–77 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Biotechnology and Biological Sciences Research Council for their support. The majority of the literature discussed in this review was collected and presented as part of a project supported by the Department for Environment, Food and Rural Affairs (DEFRA; Contract Number OF0193) in a project entitled: “Review of knowledge of the potential impacts of GMOs on organic agriculture.” We are greatly indebted to DEFRA for their support and to Bruce Pearce, James Welsh, and Martin Wolfe of the Initiative on Organic Research, Elm Farm Research Centre, United Kingdom, for their valuable collaboration and discussions. We thank Ruth Peart for help with the literature search and Helen Ghirardello for preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip J. Dale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dale, P., Clarke, B. & Fontes, E. Potential for the environmental impact of transgenic crops. Nat Biotechnol 20, 567–574 (2002). https://doi.org/10.1038/nbt0602-567

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0602-567

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing