Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transgenic avidin maize is resistant to storage insect pests

Abstract

Avidin is a glycoprotein found in chicken egg white, that sequesters the vitamin biotin. Here we show that when present in maize at levels of ≥100 p.p.m., avidin is toxic to and prevents development of insects that damage grains during storage. Insect toxicity is caused by a biotin deficiency, as shown by prevention of toxicity with biotin supplementation. The avidin maize is not, however, toxic to mice when administered as the sole component of their diet for 21 days. These dates suggest that avidin expression in food or feed grain crops can be used as a biopesticide against a spectrum of stored-produce insect pests.*

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mortality of three species of Coleoptera as a function of avidin concentration in maize meal: lesser grain borer (Rhyzopertha dominica), sawtoothed grain borer* (Oryzaephilus surinamensis), and red flour beetle (Tribolium castaneum).

Similar content being viewed by others

Notes

  1. * NOTE: In the printed version, several editorial errors were introduced. Please see the PDF for the corrected version.

References

  1. Storey, C.L., Sauer, D.B. & Walker, D. Insect populations in wheat, corn, and oats stored on the farm. J. Econ. Entomol. 76, 1323–1330 (1983).

    Article  Google Scholar 

  2. Sinha, K.K. & Sinha, A.K. Impact of stored grain pests on seed deterioration and aflatoxin contamination in maize. J. Stored Prod. Res. 28, 211–219 (1992).

    Article  Google Scholar 

  3. Cuperus, G. & Krischik, V. Why stored product integrated pest management is needed. In Stored product management. (Oklahoma State Univ. Coop. Ext. Serv. Circ. E-912, p.199; 1995).

    Google Scholar 

  4. Arbogast, R.T. & Throne, J.E. Insect infestation of farm-stored maize in South Carolina: towards characterization of a habitat. J. Stored Prod. Res. 33, 187–198 (1997).

    Article  Google Scholar 

  5. Sedlacek, J.D., Weston, P.A., Price, B.D. & Rattlingourd, P.L. Survey of insect pests in shelled corn stored on-farm in Kentucky. J. Entomol. Sci. 33, 171–179 (1998).

    Article  Google Scholar 

  6. Throne, J.E., Baker, J.E., Messina, F.J., Kramer, K.J. & Howard, J.A. Varietal resistance. In Alternatives to Pesticides in Stored-Product IPM. (eds Subramanyam, Bh. & Hagstrum, D.W.) (Kluwer Academic Publishers, Norwell, MA, 2000), in press.

    Google Scholar 

  7. Baker, J.E. & Kramer, K.J. Biotechnological approaches for stored-product insect pest management. Postharvest News Information 7, 11N–18N (1996).

    Google Scholar 

  8. Estruch, J.J. et al. Transgenic plants: an emerging approach to pest control. Nat. Biotechnol. 15, 137–141 (1997).

    Article  CAS  Google Scholar 

  9. Carozzi, N.B. & Koziel, M.G. Advances in insect control: the role of transgenic plants. (Taylor & Francis Ltd., London; 1997).

  10. Hilder, V.A. & Boulter, D. Genetic engineering of crop plants for insect resistance—a critical review. Crop Protec. 18, 177–191 (1999).

    Article  Google Scholar 

  11. Schnepf, E. et al. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 775–806 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Stevens, L. Egg white proteins. Comp. Biochem. Physiol. 100B, 1–9 (1991).

    CAS  Google Scholar 

  13. Pugliese, L., Coda, A., Malcovati, M. & Bolognesi, M. Three-dimensional structure of the tetragonal crystal form of egg-white avidin in its functional complex with biotin at 2.7 Å resolution. J. Mol. Biol. 231, 698–710 (1993).

    Article  CAS  Google Scholar 

  14. Livnah, O., Bayer, E., Wilchek, M. & Sussman, J. Three-dimensional structures of avidin and the avidin–biotin complex. Proc. Natl. Acad. Sci. USA 90, 5076–5080 (1993).

    Article  CAS  Google Scholar 

  15. Morgan, T.D., Oppert, B., Czapla, T.H. & Kramer, K.J. Avidin and streptavidin as insecticidal and growth inhibiting dietary proteins. Entomol. Exp. Appl. 69, 97–108 (1993).

    Article  CAS  Google Scholar 

  16. Levinson, H.Z. & Bergmann, E.D. Vitamin deficiencies in the housefly produced by antivitamins. J. Insect Physiol. 3, 293–305 (1959).

    Article  CAS  Google Scholar 

  17. Levinson, H.Z., Barelkovsky, J. & Bar Ilan, A.R. Nutritional effects of vitamin omission and antivitamin administration on development and longevity of the hide beetle Dermestes maculatus Deg. (Coleoptera, Dermestidae). J. Stored Prod. Res. 3, 345–352 (1967).

    Article  CAS  Google Scholar 

  18. Tsiropoulos, G.R. Dietary administration of antivitamins affected the survival and reproduction of Dacus oleae. Z. Ang. Entomol. 100, 35–39 (1985).

    Article  CAS  Google Scholar 

  19. Bruins, B.G., Scharloo, W. & Thörig, G.E.W. The harmful effect of light on Drosophila is diet-dependent. Insect Biochem. 21, 535–539 (1991).

    Article  CAS  Google Scholar 

  20. Levinson, H.Z., Levinson, A.R. & Offenberger, M. Effect of dietary antagonists and corresponding nutrients on growth and reproduction of the flour mite (Acarus siro L). Experientia 48, 721–729 (1992).

    Article  CAS  Google Scholar 

  21. Du, C. & Nickerson, K.W. Insecticidal activity of avidin. Abstr. 1995 Mtg. Soc. Invertebr. Pathol., p.70 (1995).

  22. Hood, E.E. et al. Commercial production of avidin from transgenic maize: characterization of transformant, production, processing, extraction and purification. Molec. Breed. 3, 291–306 (1997).

    Article  CAS  Google Scholar 

  23. Hood, E.E., Kusnadi, A., Nikolov, Z. & Howard, J.A. Molecular farming of industrial proteins from transgenic maize. In Chemicals via higher plant bioengineering (eds Shahidi, F. et al.) 127–147 (Kluwer Academic/Plenum Publishers, New York, NY; 1999).

    Chapter  Google Scholar 

  24. Watson, S.A. & Ramstad, P.E. Corn: chemistry and technology. (Am. Asso. Cereal Chem., St. Paul, MN; 1987).

    Google Scholar 

  25. Demianyk, C.J. & Sinha, R.N. Effect of infestation by the larger grain borer, Prostephanus truncatus (Horn), and the lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae), on stored corn. Environ. Entomol. 16, 618–624 1987).

    Article  Google Scholar 

  26. Arbogast, R.T. & Mullen, M.A. Insect succession in a stored-corn ecosystem in southeast Georgia. Ann. Entomol. Soc. Am. 81, 899–912 (1988).

    Article  Google Scholar 

  27. Tigar, B.J., Key, G.E., Flores-S, M.E. & Vazquez-Arista, M. Field and post-maturation infestation of maize by stored product pests in Mexico. J. Stored Prod. Res. 30, 1–8 (1994).

    Article  Google Scholar 

  28. Tigar, B.J., Osborne, P.E., Key, G.E., Flores-S, M.E. and Vazquez-A, M. Insect pests associated with rural maize stores in Mexico with particular reference to Prostephanus truncatus (Coleoptera:Bostrichidae). J. Stored Prod. Res. 30, 267–281 (1994).

    Article  Google Scholar 

  29. Wright, V.F. World distribution of Prostephanus truncatus. In Proc. GASGA Workshop on the Larger Grain Borer, Prostephanus truncatus. (Tropical Products Institute, Slough, UK (Deutsche Gesellschaft fur Technische Zusammenarbeit, Eschborn, Germany:); 1984), pp. 11–16.

    Google Scholar 

  30. Samols, D. et al. Evolutionary conservation among biotin enzymes. J. Biol. Chem. 263, 6461–6464 (1988).

    CAS  PubMed  Google Scholar 

  31. Richards, A. National survey of stored-product insects in the United States-1996. (unpubl. document, available from Insects Limited, Inc., Indianapolis, IN; 1997).

  32. Knowles, J.R. The mechanism of biotin-dependent enzymes. Annu. Rev. Biochem. 58, 195–221 (1989).

    Article  CAS  Google Scholar 

  33. Miura, K., Takaya, T. & Koshiba, K. The effect of biotin deficiency on the biosynthesis of the fatty acids in a blowfly, Aldrichina grahami, during metamorphosis under aseptic conditions. Arch. Int. Physiol. Biochim. 75, 65–76 (1967).

    CAS  PubMed  Google Scholar 

  34. Watanabe, T. Dietary biotin deficiency affects reproductive function and prenatal development in hamsters. J. Nutr. 123, 2101–2108 (1993).

    CAS  PubMed  Google Scholar 

  35. Baez-Saldana, A., Diaz, G., Espinoza, B. & Ortega, E. Biotin deficiency induces changes in subpopulations of spleen lymphocytes in mice. Am. J. Clin. Nutr. 67, 431–437 (1998).

    Article  CAS  Google Scholar 

  36. Pai, C.H. & Lichstein, H.C. Observations on the use of avidin in bacteriological media. Proc. Soc. Exp. Biol. Med. 116, 197–200 (1964).

    Article  CAS  Google Scholar 

  37. Pei, R. & Wright, L.D. Heat stability of avidin and avidin–biotin complex and influence of ionic strength and on affinity of avidin for biotin. Proc. Soc. Exp. Biol. Med. 117, 341–344 1964).

    Article  Google Scholar 

  38. Durance, T.D. Residual avidin toxicity in cooked egg white assayed with improved sensitivity. J. Food Sci. 56, 707–709, 729 (1991).

    Article  CAS  Google Scholar 

  39. González, M., Argaraña, C.E. & Fidelio, G.D. Extremely high thermal stability of streptavidin and avidin upon biotin binding. Biomolec. Engineering 16, 67–72 (1999).

    Article  Google Scholar 

  40. Murray, I. & Williams, P.C. Chemical principles of near-infrared technology. In Near-infrared technology in the agricultural and food industries. (eds Williams, P. C. & Norris, K.H.) 17–34 (Am. Assoc. Cereal Chem., Inc., St. Paul, MN; 1990).

    Google Scholar 

  41. Dowell, F.E., Throne, J.E. & Baker, J.E. Automated nondestructive detection of internal insect infestation of wheat kernels by using near-infrared reflectance spectroscopy. J. Econ. Entomol. 91, 899–904 (1998).

    Article  Google Scholar 

  42. Dowell, F.E., Throne, J.E., Wang, D. & Baker, J.E. Identifying stored-grain insects using near-infrared spectroscopy. J. Econ. Entomol. 92, 165–169 (1999).

    Article  Google Scholar 

  43. McGaughey, W.H. Insect resistance to the biological insecticide Bacillus thuringiensis. Science 229, 193–195 (1985).

    Article  CAS  Google Scholar 

  44. Throne, J.E. Life history of immature maize weevils (Coleoptera: Curculionidae) on corn stored at constant temperatures and relative humidities in the laboratory. Environ. Entomol. 23, 1459–1471 (1994).

    Article  Google Scholar 

  45. Wright, E.J. & Cartledge, A.P. Effect of food volume and photoperiod on initiation of diapause in the warehouse beetle, Trogoderma variabile Ballion (Coleoptera: Dermestidae). In Proc. Sixth Intl. Working Conf. on Stored-Product Protection, Canberra, Australia, Vol. 1 (eds Highley, E. Wright, E.J., Banks, H.J. & Champ, B.R.) 613–616 (CAB International, Wallingford, UK; 1994).

    Google Scholar 

  46. Bell, C.H. A review of diapause in stored-product insects. J. Stored Prod. Res. 30, 99–120 (1994).

    Article  Google Scholar 

  47. Steel, R.G.D., and Torrie, J.H. Principles and Procedures of Statistics with Special Reference to the Biological Sciences. McGraw-Hill Book Company, Inc., New York. 481 pp. (1960).

  48. SAS Institute. SAS/STAT User's guide. Version 6, Edn. 4. (SAS Institute Inc., Cary, NC; 1990).

  49. Finney, D.J. Probit analysis: a statistical treatment of the sigmoid response curve. (Cambridge University Press, London; 1964).

  50. LeOra Software. POLO-PC Probit and Logit Analysis. (LeOra Software, Berkeley, CA; 1994).

Download references

Acknowledgements

This paper is dedicated to the memory of Dr. Thomas H. Czapla, a molecular entomologist who was a team member during the early stages of this project. His passion for entomological science was exceptional. We are grateful to Drs. Michael Kanost, Subbaratnam Muthukrishnan, Sonny Ramaswamy, Charles Hedgcoth, Craig Roseland, James Baker, and Troy Weeks for commenting on this manuscript; and Ann Redmon, Trevor Bevans, Natasha Rowly, Feng Xie, Dr. Ian Tizzard and Debra Turner for technical assistance. Mention of a proprietary product does not constitute a recommendation by the USDA. The Agricultural Research Service, USDA, is an equal opportunity/affirmative action employer, and all agency services are available without discrimination.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl J. Kramer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kramer, K., Morgan, T., Throne, J. et al. Transgenic avidin maize is resistant to storage insect pests. Nat Biotechnol 18, 670–674 (2000). https://doi.org/10.1038/76531

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/76531

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing