Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Paramagnetic proteoliposomes containing a pure, native, and oriented seven-transmembrane segment protein, CCR5

Abstract

Seven-transmembrane segment, G protein-coupled receptors play central roles in a wide range of biological processes, but their characterization has been hindered by the difficulty of obtaining homogeneous preparations of native protein. We have created paramagnetic proteoliposomes containing pure and oriented CCR5, a seven-transmembrane segment protein that serves as the principal coreceptor for human immunodeficiency virus (HIV-1). The CCR5 proteoliposomes bind the HIV-1 gp120 envelope glycoprotein and conformation-dependent antibodies against CCR5. The binding of gp120 was enhanced by a soluble form of the other HIV-1 receptor, CD4, but did not require additional cellular proteins. Paramagnetic proteoliposomes are uniform in size, stable in a broad range of salt concentrations and pH, and can be used in FACS and competition assays typically applied to cells. Integral membrane proteins can be inserted in either orientation into the liposomal membrane. The magnetic properties of these proteoliposomes facilitate rapid buffer exchange useful in multiple applications. As an example, the CCR5-proteoliposomes were used to select CCR5-specific antibodies from a recombinant phage display library. Thus, paramagnetic proteoliposomes should be useful tools in the analysis of membrane protein interactions with extracellular and intracellular ligands, particularly in establishing screens for inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the formation of paramagnetic CCR5 proteoliposomes.
Figure 2: Protein and lipid composition of CCR5-proteoliposomes.
Figure 3: Confocal microscopy of fluorescently labeled CCR5 proteoliposomes.
Figure 4: Binding of anti-CCR5 antibodies to CCR5 on cells and proteoliposomes.
Figure 5: Ligand-binding properties of CCR5 proteoliposomes.
Figure 6: FACS analysis of antibody binding to CCR5.

Similar content being viewed by others

References

  1. Drews, J. Genomic sciences and the medicine of tomorrow. Nat. Biotechnol. 11, 1516–1518 (1996)

    Article  Google Scholar 

  2. Horn, F. et al. GPCRDB: an information system for G protein-coupled receptors. Nucleic Acids Res. 26, 275–279 (1998).

    Article  CAS  Google Scholar 

  3. Stadel, J.M., Wilson, S. & Bergsma, D.J. Orphan G protein-coupled receptors: a neglected opportunity for pioneer drug discovery. Trends Pharmacol. Sci. 18, 430–437 (1997).

    Article  CAS  Google Scholar 

  4. Wilson, S. et al. Orphan G-protein-coupled receptors: the next generation of drug targets? Br. J. Pharmacol. 125, 1387–1392 (1998).

    Article  CAS  Google Scholar 

  5. Watson, S. & Arkinstall, S. The G-protein linked receptor-facts book. (Academic Press, London; 1994).

    Google Scholar 

  6. Wess, J. G-protein-coupled receptors: molecular mechanisms involved in receptor activation and selectivity of G-protein recognition. FASEB J. 11, 346–354 (1997).

    Article  CAS  Google Scholar 

  7. Lefkowitz, R.J. G protein-coupled receptors and receptor kinases: from molecular biology to potential therapeutic applications. Nat. Biotechnol. 14, 283–286 (1996).

    Article  CAS  Google Scholar 

  8. Tate, C.G. & Grisshammer, R. Heterologous expression of G-protein-coupled receptors. Trends Biotechnol. 14, 426–30 (1996).

    Article  CAS  Google Scholar 

  9. Ji, T.H., Grossmann, M. & Ji, I. G protein-coupled receptors. I. Diversity of receptor–ligand interactions. J. Biol. Chem. 273, 17299–17302 (1998).

    Article  CAS  Google Scholar 

  10. Gether, U. & Kobilka, B.K. G protein-coupled receptors. II. Mechanism of agonist activation. J. Biol. Chem. 273, 17979–17982 (1998).

    Article  CAS  Google Scholar 

  11. Mellentin-Michelotti, J. et al. Determination of ligand binding affinities for endogenous seven-transmembrane receptors using fluorometric microvolume assay technology. Anal. Biochem. 272, 182–190 (1999).

    Article  CAS  Google Scholar 

  12. Kell, D. Screensavers: trends in high-throughput analysis. Trends Biotechnol. 17, 89–91 (1999).

    Article  CAS  Google Scholar 

  13. Littman, D.R. Chemokine receptors: keys to AIDS pathogenesis? Cell 93, 677–680 (1998).

    Article  CAS  Google Scholar 

  14. Wyatt, R. & Sodroski, J.G. The HIV-1 envelope glycoproteins: fusogens, antigens and immunogens. Science 280, 1884–1888 (1998).

    Article  CAS  Google Scholar 

  15. Wu, L. et al. CD-4 induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature 384, 179–83 (1996).

    Article  CAS  Google Scholar 

  16. Trkola, A. et al. CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5. Nature 384, 184–187 (1996).

    Article  CAS  Google Scholar 

  17. Alkhatib, G. et al. CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272, 1955–1958 (1996).

    Article  CAS  Google Scholar 

  18. Choe, H. et al. The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85, 1135–1148 (1996).

    Article  CAS  Google Scholar 

  19. Deng, H. et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature 381, 661–666 (1996).

    Article  CAS  Google Scholar 

  20. Doranz, B.J. et al. A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 85, 1149–1158 (1996).

    Article  CAS  Google Scholar 

  21. Dragic, T. et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381, 667–673 (1996).

    Article  CAS  Google Scholar 

  22. Samson, M. et al. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382, 722–725 (1996).

    Article  CAS  Google Scholar 

  23. Liu, R. et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86, 367–377 (1996).

    Article  CAS  Google Scholar 

  24. Mirzabekov, T. et al. Enhanced expression, native purification, and characterization of CCR5, a principal HIV-1 coreceptor. J. Biol. Chem. 274, 28745–28750 (1999).

    Article  CAS  Google Scholar 

  25. Wu, L. et al. Interaction of chemokine receptor CCR5 with its ligands: multiple domains for HIV-1 gp120 binding and a single domain for chemokine binding. J. Exp. Med. 186, 1373–1381 (1997).

    Article  CAS  Google Scholar 

  26. Lee, B. et al. Epitope mapping of CCR5 reveals multiple conformational states and distinct but overlapping structures involved in chemokine and coreceptor function. J. Biol. Chem. 274, 9617–9626 (1999).

    Article  CAS  Google Scholar 

  27. Tanaka, Y. et al. T-cell adhesion induced by proteoglycan-immobilized cytokine MIP-1 beta. Nature 361, 79–82 (1993).

    Article  CAS  Google Scholar 

  28. Webb, L.M., Ehrengruber, M.U., Clark-Lewis, I., Baggiolini, M. & Rot, A. Binding to heparan sulfate or heparin enhances neutrophil responses to interleukin 8. Proc. Natl. Acad. Sci. USA 90, 7158–7162 (1993).

    Article  CAS  Google Scholar 

  29. Luster, A.D., Greenberg, S.M. & Leder, P. The IP-10 chemokine binds to a specific cell surface heparan sulfate site shared with platelet factor 4 and inhibits endothelial cell proliferation. J. Exp. Med. 182, 219–231 (1995).

    Article  CAS  Google Scholar 

  30. Zeng, F.Y. & Wess, J. Identification and molecular characterization of m3 muscarinic receptor dimers. J. Biol. Chem. 274, 19487–19497 (1999).

    Article  CAS  Google Scholar 

  31. Salamon, Z., Wang, Y., Brown, M.F., Macleod, H.A. & Tollin, G. Conformational changes in rhodopsin probed by surface plasmon resonance spectroscopy. Biochemistry 33, 13706–11 (1994).

    Article  CAS  Google Scholar 

  32. Salamon, Z., Wang, Y., Soulages, J.L., Brown, M.F. & Tollin, G. Surface plasmon resonance spectroscopy studies of membrane proteins: transducin binding and activation by rhodopsin monitored in thin membrane films. Biophys. J. 71, 283–294 (1996).

    Article  CAS  Google Scholar 

  33. Bieri, C., Ernst, O.P., Heyse, S., Hofmann, K.P. & Vogel, H. Micropatternal immobilization of G protein-coupled receptor and direct detection of G protein activation. Nat. Biotechnol. 17, 1105–1108 (1999).

    Article  CAS  Google Scholar 

  34. Molday, R.S. & MacKenzie, D. Monoclonal antibodies to rhodopsin: characterization, cross-reactivity, and application as structural probes. Biochemistry 22, 653–660 (1983).

    Article  CAS  Google Scholar 

  35. Folch, J., Lees, M. & Sloan-Stanley, G.H. A simple method for isolation and purification of total lipids from animal tissue. J. Biol. Chem. 226, 497–509 (1957).

    CAS  PubMed  Google Scholar 

  36. Wiener, M.C. & White, S.H. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. III. Complete structure. Biophys. J. 61, 437–447 (1992).

    Google Scholar 

Download references

Acknowledgements

We thank Ms. Sheri Farnum and Ms. Yvette McLaughlin for manuscript preparation, Ms. Minou Modabber for artwork, and Ms. Maris Handley for assistance with confocal microscopy. We acknowledge the National Cell Culture Center for supplying the 1D4 antibody. We thank Dr. R. Wyatt, Dr. J. Rhodes, and P. Kolchinsky for providing plasmids and for helpful discussions. This work was supported by grants (AI 41851 and GM 56550) from the National Institutes of Health, by a Center for AIDS Research grant, and by the G. Harold and Leila Mathers Foundation, the Friends 10, William F. McCarty Cooper, and Douglas and Judith Krupp.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Sodroski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirzabekov, T., Kontos, H., Farzan, M. et al. Paramagnetic proteoliposomes containing a pure, native, and oriented seven-transmembrane segment protein, CCR5. Nat Biotechnol 18, 649–654 (2000). https://doi.org/10.1038/76501

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/76501

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing