Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

High-level expression of a sweet protein, monellin, in the food yeast Candida utilis

Abstract

We describe the heterologous expression of monellin in the yeast Candida utilis. A single-chain monellin gene was expressed under the control of the glyceraldehyde-3-phosphate decarboxylase gene promoter from C. utilis. A promoter-deficient marker gene allowed high-copy-number integration of vectors into either the rDNA locus or the URA3 gene locus. Monellin was produced at a high level, accounting for >50% of the soluble protein. No significant decrease in the production level of monellin was detected in transformants after 50 generations of nonselective growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Buckholz, R.G. and Gleeson, A.G. 1991. Yeast systems for the commercial production of heterologous proteins. Bio/Technology 9: 1067–1072.

    Article  CAS  Google Scholar 

  2. Cregg, J.M., Vedvick, T.S. and Raschke, W.C. 1993. Recent advances in the expression of foreign genes in Pichia pastoris. Bio/Technology 11: 905–910.

    CAS  Google Scholar 

  3. Ichii, T. et al. 1993. Development of a new commercial-scale airlift fermetor for rapid growth of yeast. J. Ferment. Bioeng. 75: 375–379.

    Article  CAS  Google Scholar 

  4. Boze, H., Moulin, G. and Galzy, P. 1992. Production of food and fodder yeasts. Crit Review Biotech. 12 65–86.

    Article  CAS  Google Scholar 

  5. Kondo, K., Saito, T., Kajiwara, S., Takagi, M. and Misawa, N. 1995. A transformation system for the yeast Candida utilis: use of a modified endogenous ribo-somal protein gene as a drug-resistant marker and ribosomal DMA as an integration target for vector DMA. J. Bacteriol. 177: 7171–7177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Morris, J.A. and Cagan, R.H. 1972. Purification of monellin, the sweet principle of Discorephyllum cumminisii. Biochem. Biophys. Acta. 261: 114–122.

    Article  CAS  PubMed  Google Scholar 

  7. Bohak, Z. and Li, S.-L. 1976. The structure of monellin and its relation to the sweetness of the protein. Biocim. Biophys. Acta. 427: 153–170.

    Article  CAS  Google Scholar 

  8. Kohmura, M., Nio, N. and Ariyoshi, Y. 1990. Complete amino acid sequence of the sweet protein monellin. Agric. Biol. Chem. 54: 2219–2224.

    CAS  PubMed  Google Scholar 

  9. Kim, S.-H. et al. 1989. Redesigning a sweet protein: increased stability and renat-urability. Protein Eng. 2: 571–575.

    Article  CAS  PubMed  Google Scholar 

  10. Lee, J.H. et al. 1988. Expression of synthetic thaumatin genes in yeast. Biochemistry 27: 5101–5107.

    Article  CAS  PubMed  Google Scholar 

  11. Zemanek, E.G. and Wasserman, B.R. 1995. Issues and advances in the use of transgenic organisms for the production of thaumatin, the intensely sweet protein from Thaumatococcus danielli. Critical Reviews in Food and Nutrition 35: 455–466.

    Article  CAS  Google Scholar 

  12. Penarrubia, L., Kim, R., Giovannoni, J., Kim, S.-H., and Fischer, R.L. 1992. Production of the sweet protein monellin in transgenic plant. Bio/Technology 10: 561–564.

    CAS  Google Scholar 

  13. Lopes, A.S. et al. 1989. High-copy-number integration into the ribosomal DMA of Saccharomyces cerevisiae: a new vector for high level expression. Gene 79: 199–206.

    Article  CAS  PubMed  Google Scholar 

  14. Lopes, T.S., Hakkaart, G.-J.A.J., Koerts, B.L., A., R.H., and Planta, R.J. 1991. Mechanism of high-copy-number integration of pMIRY-type vector into ribosomal DMA of Sccharomyces cerevisiae. Gene 105 83–90.

    Article  CAS  PubMed  Google Scholar 

  15. Lopes, T.S., De Wijs, I.J., Steenhauer, S.I., Verbakel, J. and Planta, R.J. 1996. Factors affecting the mitotic stability of high-copy-number integration into ribosomal DMA of Saccharomyces cerevisiae. Yeast 12: 467–477.

    Article  CAS  PubMed  Google Scholar 

  16. Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  17. Hartley, J.L. and Donelson, J.E. 1980. Nucleotide sequence of the yeast plasmid. Nature 286: 860–864.

    Article  CAS  PubMed  Google Scholar 

  18. Struhl, K., Stinchcomb, D.T., Scherer, S. and Davis, R.W. 1979. High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc. Nail. Acad. Sci. USA 76: 1035–1039.

    Article  CAS  Google Scholar 

  19. Yamano, S., Tanaka, J. and Inoue, T. 1994. Cloning and expression of the gene encoding a-acetate decarboxylase from Acetobacter aceti ssp. xylinum in brewer's yeast. J. Biotechnol. 32: 165–171.

    Article  CAS  PubMed  Google Scholar 

  20. Kondo, K. and Inouye, M. 1991. TIP1, a cold-shock inducible gene of Saccharomyces cerevisiae. J. Biol. Chem. 266: 17537–17544.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kondo, K., Miura, Y., Sone, H. et al. High-level expression of a sweet protein, monellin, in the food yeast Candida utilis. Nat Biotechnol 15, 453–457 (1997). https://doi.org/10.1038/nbt0597-453

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0597-453

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing