Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

A dominant mutant receptor from Arabidopsis confers ethylene insensitivity in heterologous plants

Abstract

Ethylene (C2H4) is a gaseous hormone that affects many aspects of plant growth and development. Ethylene perception requires specific receptors and a signal transduction pathway to coordinate downstream responses. The etr1-1 gene of Arabidopsis encodes a mutated receptor that confers dominant ethylene insensitivity. Evidence is presented here that etr1-1 also causes significant delays in fruit ripening, flower senescence, and flower abscission when expressed in tomato and petunia plants. The ability of etr1-1 to function in heterologous plants suggests that this pathway of hormone recognition and response is highly conserved and can be manipulated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Abeles F., Morgan, P., and Saltveit, M., Jr., 1992. Ethylene in plant biology. Academic Press, New York.

    Chapter  Google Scholar 

  2. Ecker, J. 1995. The ethylene signal transduction pathway in plants. Science 268: 667–675.

    Article  CAS  Google Scholar 

  3. Schaller, G. and Bleecker, A. 1995. Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science 270: 1809–1811.

    Article  CAS  Google Scholar 

  4. Chang, C., Kwok, S., Bleecker, A., and Meyerowitz, E. 1993. Arabidopsis ethyl-ene-response gene ETR1 similarity of product to two-component regulators. Science 262: 539–544.

    Article  CAS  Google Scholar 

  5. Wilkinson, J., Lanahan, M., Yen, H.-C., Giovannoni, J., and Klee, H. 1995. An ethylene-inducible component of signal transduction encoded by Never-ripe. Science 270: 1807–1809.

    Article  CAS  Google Scholar 

  6. Lanahan, M., Yen, H.-C., Giovannoni, J., and Klee, H. 1994. The Never Ripe mutation blocks ethylene perception in tomato. Plant Cell 6: 521–530.

    Article  CAS  Google Scholar 

  7. Singh, A., Evensen, K., and Kao, T.-H. 1992. Ethylene synthesis and floral senescence following compatible and incompatible pollinations in Petunia inflata. Plant Physiol. 99: 38–45.

    Article  CAS  Google Scholar 

  8. Tang, X., Gomes, A., Bhatia, A., and Woodson, W. 1994. Pistil-specific and ethylene-regulated expression of 1-aminocyclopropane-1-carboxylate oxidase genes in petunia flowers. Plant Cell 6: 1227–1239.

    Article  CAS  Google Scholar 

  9. Schaller, G., Ladd, A., Lanahan, M., Spanbauer, J., and Bleecker, A. 1995. The ethylene response mediator ETR1 from Arabidopsis forms a disulfide-linked dimer. J. Biol. Chem. 270: 12526–12530.

    Article  CAS  Google Scholar 

  10. Bleecker, A., Estelle, M., Somerville, C., and Kende, H. 1988. Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241: 1086–1089.

    Article  CAS  Google Scholar 

  11. Theologis, A. 1992. One rotten apple spoils the whole bushel The role of ethylene in fruit ripening. Cell 70: 181–184.

    Article  CAS  Google Scholar 

  12. Zarembinski, T. and Theologis, A. 1994. Ethylene biosynthesis and action a case of conservation. Plant Mol. Biol. 26: 1579–1597.

    Article  CAS  Google Scholar 

  13. Bleecker, A. and Schaller, G. 1996. The mechanism of ethylene perception. Plant Physiol. 111: 653–660.

    Article  CAS  Google Scholar 

  14. Klee, H., Hayford, M., Kretzmer, K., Barry, G., and Kishore, G. 1991. Control of ethylene synthesis by expression of a bacterial enzyme in transgenic plants. Plant Cell 3: 1187–1193.

    Article  CAS  Google Scholar 

  15. Richins, R., Scholthof, H., and Shepard, R. 1987. Sequence of figwort mosaic virus DNA (caulimovirus group). Nucl. Acids Res. 15: 8451–8466.

    Article  CAS  Google Scholar 

  16. Sanger, M., Daubert, S., and Goodman, R. 1990. Characteristics of a strong promoter from figwort mosaic virus comparison with the analogous 35S promoter from cauliflower mosaic virus and the regulated mannopine synthase promoter. Plant Mol. Biol. 14: 433–443.

    Article  CAS  Google Scholar 

  17. Barry, G., Kishore, G., Padgette, S., Kolacz, K., Re, D., Weldon, M., et al. 1992. Commercialization of glyphosate herbicide resistant crops for improved weed control. J. Cell. Biochem. 16(suppl. F): 202.

    Google Scholar 

  18. McCormick, S., Niedermeyer, J., Fry, J., Barnason, A., Horsch, R., and Fraley, R. 1986. Leaf disc transformation of cultivated tomato (L esculentum) using Agrobacterium tumefaciens. Plant Cell Rep. 5: 81–84.

    Article  CAS  Google Scholar 

  19. Horsch, R., Fry, J., Hoffmann, N., Wallroth, M., Eichholtz, D., Rogers, S., et al. 1985. A simple and general method for transferring genes into plants. Science 227: 1229–1231.

    Article  CAS  Google Scholar 

  20. Yen, H.-C., Lee, S., Tanksley, S., Lanahan, M., Klee, H., and Giovannoni, J. 1995. The tomato Never-ripe locus regulates ethylene-inducible gene expression and is linked to a homolog of the Arabidopsis ETR1 gene. Plant Physiol. 107: 3343–1353.

    Google Scholar 

  21. Clark, D., Richards, C., Hilioti, Z., Lind-lversen, S., and Brown, K. Effect of pollination on accumulation of ACC synthase and ACC oxidase transcripts, ethylene production and flower petal abscission in geranium (Pelargonium x hortorum L. H. Bailey). Plant Mol. Biol. In press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry J. Klee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilkinson, J., Lanahan, M., Clark, D. et al. A dominant mutant receptor from Arabidopsis confers ethylene insensitivity in heterologous plants. Nat Biotechnol 15, 444–447 (1997). https://doi.org/10.1038/nbt0597-444

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0597-444

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing