Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Review
  • Published:

DNA enzymes

Abstract

Biological catalysis is dominated by enzymes that are made of protein, but several distinct classes of catalytic RNAs are known to promote chemical transformations that are fundamental to cellular metabolism. Is biological catalysis limited only to these two biopolymers, or is DNA also capable of functioning as an enzyme in nature? To date, no DNA enzymes of natural origin have been found. However, an increasing number of catalytic DNAs, with characteristics that are similar to those of ribozymes, are being produced outside the confines of the cell. An assessment of the potential for structure formation by DNA leads to the conclusion that DNA might have considerable latent potential for enzymatic function.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cech, T.R. 1990. Self-splicing of group I introns. Annu. Rev. Biochem. 59: 543–568.

    Article  CAS  PubMed  Google Scholar 

  2. Symons, R.H. 1992. Small catalytic RNAs. Annu. Rev. Biochem. 61: 641–671.

    CAS  PubMed  Google Scholar 

  3. Altman, S., Kirsebom L., and Talbot, S. . 1995. Recent studies of RNase R pp. 67–78 in tRNA: structure, biosynthesis, and function.Söll, D. and RajBhandary, U. (eds.). American Society for Microbiology, Washington, DC.

    Google Scholar 

  4. Michel, F. and Ferat, J.-L. . 1995. Structure and activity of group II introns. Annu. Rev. Biochem. 64: 435–461.

    CAS  PubMed  Google Scholar 

  5. Sharp, P. . 1991. Five easy pieces. Science 253: 663.

    Google Scholar 

  6. Noller, H.F., Hoffarth, V. and Zimniak, L. 1992. Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256: 1416–1419.

    CAS  PubMed  Google Scholar 

  7. Grain, P.F. and McCloskey, J.A. . 1996. The RNA modification database. Nucleic Acids Res. 24: 98–99.

    Google Scholar 

  8. Robertson, M.P. and Miller, S.L. 1995. Prebiotic synthesis of 5-substituted uracils: A bridge between the RNA world and the DNA-protein world. Science 268: 702–705.

    CAS  PubMed  Google Scholar 

  9. Breaker, R.R. and Joyce, G.F. . 1994. Inventing and improving ribozyme function: Rational design versus iterative selection methods. Trends Biotech. 12: 268–275.

    CAS  Google Scholar 

  10. Chapman, K.B. and Szostak, J.W. 1994. In vitro selection of catalytic RNAs. Curr. Opin. Struct. Biol. 4: 618–622.

    CAS  PubMed  Google Scholar 

  11. Burgstaller, P. and Famulok, M. M. 1995. Synthetic ribozymes and the first deoxyribozyme. Angew. Chem. Int. Ed. Engl. 34: 1189–1192.

    CAS  Google Scholar 

  12. Breaker, R.R. . 1996. Are engineered proteins getting competition from RNA? Curr. Opin. Biotech. 7: 442–448.

    CAS  PubMed  Google Scholar 

  13. Breaker, R.R. . 1997. In vitro selection of catalytic polynucleotides. Chem. Rev. In press.

  14. Ekland, E.H., Szostak, J.W. and Bartel, D.P. . 1995. Structurally complex and highly active ligases derived from random RNA sequences. Science 269: 364–370.

    Article  CAS  PubMed  Google Scholar 

  15. Breaker, R.R. and Joyce, G.F. . 1995. Self-incorporation of coenzymes by ribo-zymes. J. Mol. Evol. 40: 551–558.

    CAS  PubMed  Google Scholar 

  16. Pyle, A.M. . 1993. Ribozymes: A distinct class of metalloenzymes. Science 261: 709–714.

    CAS  PubMed  Google Scholar 

  17. Gold, L., Polisky, B., Uhlenbeck, O. and Yarus, M. . 1995. Diversity of oligo-nucleotide functions. Annu. Rev. Biochem. 64: 763–797.

    CAS  PubMed  Google Scholar 

  18. Rich, A. 1993. DNA comes in many forms. Gene 135: 99–109.

    CAS  PubMed  Google Scholar 

  19. Orgel, L.E. . 1968. Evolution of the genetic apparatus. J. Mol. Biol. 38: 381–393.

    CAS  PubMed  Google Scholar 

  20. Cech, T.R. . 1987. The chemistry of self-splicing RNA and RNA enzymes. Science 236: 1532–1539.

    CAS  PubMed  Google Scholar 

  21. Ellington, A.D. and Szostak, J.W. . 1990. In vitro selection of RNA molecules that bind specific ligands. Nature 346: 818–822.

    CAS  PubMed  Google Scholar 

  22. Huizenga, D.E. and Szostak, J.W. . 1995. A DNA aptamer that binds adeno-sine and ATP. Biochemistry 34: 656–665.

    CAS  PubMed  Google Scholar 

  23. von Ahsen, U. and Schroeder, R. 1993. RNA as a catalyst: Natural and 60. designed ribozymes. BioEssays 15: 299–307.

    CAS  PubMed  Google Scholar 

  24. Sigurdsson, S.T. and Eckstein, F. . 1995. Structure-function relationships of hammerhead ribozymes: from understanding to applications. Trends Biotech. 13: 286–289.

    CAS  Google Scholar 

  25. Cate, J.H., Gooding, A.R., Podell, E., Zhou, K., Golden, B.L., Kundrot, C.E. et al. 1996. Crystal structure of a group I ribozyme domain: Principles of RNA packing. Science 273: 1678–1685.

    CAS  PubMed  Google Scholar 

  26. Moras, D. 1997. A major leap toward the tertiary structure of large RNAs. RNA. 3: 111–113.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu, T. and Orgel, L.E. . 1992. Nonenzymatic template-directed synthesis on 64. oligodeoxycytidylate sequences in hairpin oligodeoxynucleotides. J. Am. Chem. Soc. 114: 317–322.

    CAS  PubMed  Google Scholar 

  28. von Kiedrowski, G. 1986. A self-replicating hexadeoxynucleotide. Angew. Chem. Int. Ed. Engl. 25: 932–935.

    Google Scholar 

  29. Dervan, P. and Luebke, K. . 1989. Nonenzymatic ligation of oligodeoxyribonu- cleotides on a duplex DNA template by triple-helix formation. J. Am. Chem. Soc. 111: 8733–8735.

    Google Scholar 

  30. Li, T. and Nicolaou, K.C. . 1994. Chemical self-replication of palindromic 67. duplex DNA. Nature 369: 218–220.

    CAS  PubMed  Google Scholar 

  31. Breaker, R.R. and Joyce, G.F. . 1994. A DNA enzyme that cleaves RNA. Chem. & Biol. 1: 223–229.

    CAS  Google Scholar 

  32. Breaker, R.R. and Joyce, G.F. 1995. A DNA enzyme with Mg2+-dependent RNA phosphoesterase activity. Chem. & Biol. 2: 655–660.

    CAS  Google Scholar 

  33. Cuenoud, B. and Szostak, J.W. . 1995. A DNA metalloenzyme with DNA ligase activity. Nature 375: 611–614.

    CAS  PubMed  Google Scholar 

  34. Carmi, N., Shultz, L.A. and Breaker, R.R. 1996. In vitro selection of self-cleaving DNAs. Chem. & Biol. 3: 1039–1046.

    CAS  Google Scholar 

  35. Walsh, C. 1979. Enzymatic Reaction Mechanisms. W.H. Freeman, New York.

  36. Fersht, A. 1985. Enzyme Structure and Mechanism. W.H. Freeman, New York.

  37. Kraut, J. 1988. How do enzymes work? Science 242: 533–540.

    CAS  PubMed  Google Scholar 

  38. Piccirilli, J.A., Krauch, T., Moroney, S.E. and Benner, S.A. 1990. Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic. alphabet. Nature 343: 33–37.

    CAS  PubMed  Google Scholar 

  39. Yarus, M. 1993. How many catalytic RNAs? Ions and the Cheshire cat conjecture. FASEB J. 7: 31–39.

    CAS  PubMed  Google Scholar 

  40. Connell, G.J. and Christian, E.L. 1993. Utilization of cofactors expands metabolism in a new RNA World. Orig. Life 23: 291–297.

    CAS  Google Scholar 

  41. Corey, M.J. and Corey, E. 1996. On the failure of de novo-designed peptides as biocatalysts. Proc. Natl. Acad. Sci. USA 93: 11428–11434.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Benkovic, S.J. 1996. The key is in the pocket. Nature 383: 23–24.

    CAS  PubMed  Google Scholar 

  43. Sanger, W. 1984. pp. 220–241 in Principles of nucleic acid structure. Springer-Verlag, New York.

  44. Kahn, A.S. and Roe, B.A. 1988. Aminoacylation of synthetic DNAs corresponding to Escherichia coli phenylalanine and lysine tRNAs. Science 241: 74–79.

    Google Scholar 

  45. Perreault, J., Pon, R.T., Jiang, M., Usman, N., Pika, J., Ogilvie, K.K. and Cedergren, R. 1989. The synthesis and functional evaluation of RNA and DNA polymers having the sequence of Escherichia coli tRNAfmet. Eur. J. Biochem. 186: 87–93.

    CAS  PubMed  Google Scholar 

  46. Paquette, J., Nicoghosian, K., Qi, G., Beauchemin, N. and Cedergren, R. 1990. The conformation of single-stranded nucleic acids: tDNA versus tRNA. Eur. J. Biochem. 189: 259–265.

    CAS  PubMed  Google Scholar 

  47. Yang, J., Usman, N., Chartrand, P. and Cedergren, R. 1992. Minimum ribo-nucleotide requirement for catalysis by the RNA hammerhead domain. Biochemistry 31: 5005–5009.

    CAS  PubMed  Google Scholar 

  48. Chartrand, P., Harvey, S.C., Ferbeyre, G., Usman, N. and Cedergren, R. 1995. An oligodeoxyribonucleotide that supports catalytic activity in the hammerhead ribozyme domain. Nucleic Acids Res. 23: 4092–4096.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Woese, C.R., Gutell, R.R., Gupta, R. and Noller, H.F. 1983. Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol. Rev. 47: 621–669.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gutell, R.R. and Fox, G.E. 1988. A compilation of large subunit RNA 83. sequences in a structural format. Nucleic Acids Res. 16: r175–r269.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Tuerk, C., Gauss, P., Thermes, C., Groebe, D.R., Gayle, M., Guild, N. et al. 1988. CUUCGG hairpins: Extraordinarily stable RNA secondary structures associated with various biochemical processes. Proc. Natl. Acad. Sci. USA 85: 1364–1368.

    CAS  Google Scholar 

  52. Cheong, C., Varani, G. and Tinoco, I., Jr. 1990. Solution structure of an unusually stable RNA hairpin, 5′GGAC(UUCG)GUCC. Nature 346: 680–682.

    CAS  PubMed  Google Scholar 

  53. Heus, H.A. and Pardi, A. 1991. Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops. Science. 253: 191–194.

    CAS  PubMed  Google Scholar 

  54. SantaLucia, J., Jr Kierzek, R. and Turner, D.H. 1992. Context dependence 90. of hydrogen bond free energy revealed by substitutions in an RNA hairpin. Science 256: 217–219.

    CAS  PubMed  Google Scholar 

  55. Nadeau, J.G. and Gilham, P.T. 1985. Anomalous hairpin formation in an oligodeoxyribonucleotide. Nucl. Acids Res. 13: 8259–8274.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hirao, I., Nishimura Y., Naraoka, T., Watanabe, K., Arata, Y. and Miura, K. 1989. Extraordinary stable structures of short single-stranded DNA fragments containing a specific base sequence: d(GCGAAAGC). Nucl. Acids Res. 17: 2223–2231.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hilbers, C.W., Blommers, M.J.J. and van de Ven, F. J.M. 1991. High resolution NMR studies of DNA hairpins with four nucleotides in the loop region. Nucleosides Nucleotides 10: 61–80.

    CAS  Google Scholar 

  58. Pyle, A.M., Murphy, F.L. and Cech, T.R. 1992. RNA substrate binding site in the catalytic core of the Tetrahymena ribozyme. Nature 358: 123–128.

    CAS  PubMed  Google Scholar 

  59. Strobel, S.A. and Cech, T.R. 1993. Tertiary interactions with the internal guide sequence mediate docking of the helix into the catalytic core of the Tetrahymena ribozyme. Biochemistry 32: 13593–13604.

    CAS  PubMed  Google Scholar 

  60. Jaeger, L., Michel F. and Westhof, E . 1994. Involvement of a GNRA tetraloop in long-range RNA tertiary interactions. J. Mol. Biol. 236: 1271–1276.

    CAS  PubMed  Google Scholar 

  61. Murphy, F.L. and Cech, T.R. 1994. GAAA tetraloop and conserved bulge stabilize tertiary structure of a group I intron domain. J. Mol. Biol. 236: 49–63.

    CAS  PubMed  Google Scholar 

  62. Pley, H.W., Flaherty, K.M. and McKay, D.B. 1994. Model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix. Nature 372: 111–113.

    CAS  PubMed  Google Scholar 

  63. Costa, M. and Michel, F. 1995. Frequent use of the same tertiary motif by self-folding RNAs. EMBO J. 14: 1276–1285.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Gold, L. 1995. Oligonucleotides as research, diagnostic, and therapeutic agents. J. Biol. Chem. 270: 13581–13584.

    CAS  PubMed  Google Scholar 

  65. Bock, L.C., Griffin, L.C., Latham, J.A., Vermaas, E.H. and Toole, J.J. 1992. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355: 564–566.

    CAS  PubMed  Google Scholar 

  66. Ellington, A.E. and Szostak, J.W. 1992. Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 355: 850–852.

    CAS  PubMed  Google Scholar 

  67. Schneider, D.J., Feigon, J., Hostomsky, Z. and Gold L 1995 High-affinity ssDNA inhibitors of the reverse transcriptase of type 1 Human Immunodeffi-ciency Virus. Biochemistry 34: 9599–9610.

    CAS  PubMed  Google Scholar 

  68. Lin Y., Padmapriya, Y.L, Morden, K.M., and Jayasena, S.D. 1995. Peptide conjugation to an in vitro-selected DNA ligand improves enzyme inhibition. Proc. Natl. Acad. Sci. USA 92: 11044–11048.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Latham, J.A., Johnson, R. and Toole, J.J. 1994. The application of a modified nucleotide in aptamer selection: novel thrombin aptamers containing 5-(1-pentynyl)-2′-deoxyuridine. Nucl. Acids Res. 22: 2817–2822.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Wyatt, J.R., Vickers, T.A., Robertson, J.L., Buckheit, R.W., Jr Klimkait, T., DeBaets, E. et al 1994. Combinatorially selected guanosine-quartet structure is a potent inhibitor of human immunodeficiency virus envelope-mediated cell fusion. Proc. Natl. Acad. Sci. USA 91: 1356–1360.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Jenison, R.D., Gill, S.C., Pardi, A. and Polisky, B. 1994. High-resolution molecular discrimination by RNA. Science 263: 1425–1429.

    CAS  PubMed  Google Scholar 

  72. Guschlbauer, W., Chantot, J.-F. and Thiele, D. 1990. Four-stranded nucleic acid structures 25 years later: from guanosine gels to telomeric DNA. J. Biomol. Struct. Dyn. 8: 491–511.

    CAS  PubMed  Google Scholar 

  73. Williamson, J.R. 1994. G-quartet structures in telomeric DNA. Annu. Rev. Biophys. Biomol. Struct. 23: 703–730.

    CAS  PubMed  Google Scholar 

  74. Fang, G. and Cech, T.R. 1993. The B subunit of Oxytricha telomere-binding protein promotes G-quartet formation by telomeric DNA. Cell 74: 875–885.

    CAS  PubMed  Google Scholar 

  75. Wang, K.Y., McCurdy, S., Shea, R.G., Swaminathan, S. and Bolton P.H. 1993. A DNA aptamer which binds to and inhibits thrombin exhibits a new structural motif for DNA. Biochemistry 32: 1899–1904.

    CAS  PubMed  Google Scholar 

  76. Macaya, R.F., Schultze, P., Smith, F.W., Roe, J.A. and Feigon, J. 1993. Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution. Proc. Natl. Acad. Sci. USA 90: 3745–3749.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Schultze, P., Macaya, R.F. and Feigon, J. 1994. Three-dimentional solution structure of the thrombin-binding DNA aptamer d(GGTTGGTGTGGTTGG). J. Mol. Biol. 235: 1532–1547.

    CAS  PubMed  Google Scholar 

  78. Macaya, R.F., Waldron, J.A., Beutel, B.A., Gao, H., Joesten, M.E., Yang, M. et al. 1995. Structural and functional characterization of potent antithrombic Oligonucleotides possessing both quadruplex and duplex motifs. Biochemistry 34: 4478–4492.

    CAS  PubMed  Google Scholar 

  79. Tsiang, M., Gibbs, C.S., Griffin, L.C., Dunn, K.E. and Leung, L.L.K. 1995. Selection of a suppressor mutation that restores affinity of an oligonucleotide inhibitor for thrombin using in vitro genetics. J. Biol. Chem. 270: 19370–19376.

    CAS  PubMed  Google Scholar 

  80. Li Y., Geyer, C.R., and Sen, D. 1996. Recognition of anionic porphyrins by DNA aptamers. Biochemistry 35: 6911–6922.

    CAS  PubMed  Google Scholar 

  81. Faulhammer, D. and Famulok, M. 1996. Ca2+ as a cofactor for a novel RNA-cleaving deoxyribozyme. Angew. Chem. Int. Ed. Engl. 35: 2837–2841.

    CAS  Google Scholar 

  82. Li, Y. and Sen, D. 1996. A catalytic DNA for porphyrin metallation. Nature Struct. Biol. 3: 743–747.

    CAS  PubMed  Google Scholar 

  83. Matthews, B.W. 1993. Structural and genetic analysis of protein folding and stability. Curr. Opin. Struct. Biol. 3: 589–593.

    CAS  Google Scholar 

  84. Cordes, M.H.J., Davidson, A.R. and Sauer, R.T. 1996. Sequence space, folding and protein design. Curr. Opin. Struct. Biol. 6: 3–10.

    CAS  PubMed  Google Scholar 

  85. Chapman, M.S. and Rossmann, M.G. 1995. Single-stranded DNA-protein interactions in canine parvovirus. Structure 3: 151–162.

    CAS  PubMed  Google Scholar 

  86. Gilbert, W. 1986. The RNA World. Nature 319: 618.

    Google Scholar 

  87. Joyce, G.F. 1989. RNA evolution and the origins of life. Nature 338: 217–224.

    CAS  PubMed  Google Scholar 

  88. Orgel, L.E. 1994. The origin of life on the earth. Sclent. Am. 271: 77–83.

    Google Scholar 

  89. Lee, D.H., Granja, J.R., Martinez, J.A., Severin, K. and Ghadiri, M.R. 1996. A self-replicating peptide. Nature 382: 525–528.

    CAS  PubMed  Google Scholar 

  90. Kazakov, S.A., Astashkina, T.G., Mamaev, S.V. and Vlassov, V.V. 1988. Site-specific cleavage of single-stranded DNAs at unique sites by a copper-dependent redox reaction. Nature 335: 186–188.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breaker, R. DNA enzymes. Nat Biotechnol 15, 427–431 (1997). https://doi.org/10.1038/nbt0597-427

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0597-427

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing