DNA enzymes

Abstract

Biological catalysis is dominated by enzymes that are made of protein, but several distinct classes of catalytic RNAs are known to promote chemical transformations that are fundamental to cellular metabolism. Is biological catalysis limited only to these two biopolymers, or is DNA also capable of functioning as an enzyme in nature? To date, no DNA enzymes of natural origin have been found. However, an increasing number of catalytic DNAs, with characteristics that are similar to those of ribozymes, are being produced outside the confines of the cell. An assessment of the potential for structure formation by DNA leads to the conclusion that DNA might have considerable latent potential for enzymatic function.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Cech, T.R. 1990. Self-splicing of group I introns. Annu. Rev. Biochem. 59: 543–568.

  2. 2

    Symons, R.H. 1992. Small catalytic RNAs. Annu. Rev. Biochem. 61: 641–671.

  3. 3

    Altman, S., Kirsebom L., and Talbot, S. . 1995. Recent studies of RNase R pp. 67–78 in tRNA: structure, biosynthesis, and function.Söll, D. and RajBhandary, U. (eds.). American Society for Microbiology, Washington, DC.

  4. 4

    Michel, F. and Ferat, J.-L. . 1995. Structure and activity of group II introns. Annu. Rev. Biochem. 64: 435–461.

  5. 5

    Sharp, P. . 1991. Five easy pieces. Science 253: 663.

  6. 6

    Noller, H.F., Hoffarth, V. and Zimniak, L. 1992. Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256: 1416–1419.

  7. 7

    Grain, P.F. and McCloskey, J.A. . 1996. The RNA modification database. Nucleic Acids Res. 24: 98–99.

  8. 8

    Robertson, M.P. and Miller, S.L. 1995. Prebiotic synthesis of 5-substituted uracils: A bridge between the RNA world and the DNA-protein world. Science 268: 702–705.

  9. 9

    Breaker, R.R. and Joyce, G.F. . 1994. Inventing and improving ribozyme function: Rational design versus iterative selection methods. Trends Biotech. 12: 268–275.

  10. 10

    Chapman, K.B. and Szostak, J.W. 1994. In vitro selection of catalytic RNAs. Curr. Opin. Struct. Biol. 4: 618–622.

  11. 11

    Burgstaller, P. and Famulok, M. M. 1995. Synthetic ribozymes and the first deoxyribozyme. Angew. Chem. Int. Ed. Engl. 34: 1189–1192.

  12. 12

    Breaker, R.R. . 1996. Are engineered proteins getting competition from RNA? Curr. Opin. Biotech. 7: 442–448.

  13. 13

    Breaker, R.R. . 1997. In vitro selection of catalytic polynucleotides. Chem. Rev. In press.

  14. 14

    Ekland, E.H., Szostak, J.W. and Bartel, D.P. . 1995. Structurally complex and highly active ligases derived from random RNA sequences. Science 269: 364–370.

  15. 15

    Breaker, R.R. and Joyce, G.F. . 1995. Self-incorporation of coenzymes by ribo-zymes. J. Mol. Evol. 40: 551–558.

  16. 16

    Pyle, A.M. . 1993. Ribozymes: A distinct class of metalloenzymes. Science 261: 709–714.

  17. 17

    Gold, L., Polisky, B., Uhlenbeck, O. and Yarus, M. . 1995. Diversity of oligo-nucleotide functions. Annu. Rev. Biochem. 64: 763–797.

  18. 18

    Rich, A. 1993. DNA comes in many forms. Gene 135: 99–109.

  19. 19

    Orgel, L.E. . 1968. Evolution of the genetic apparatus. J. Mol. Biol. 38: 381–393.

  20. 20

    Cech, T.R. . 1987. The chemistry of self-splicing RNA and RNA enzymes. Science 236: 1532–1539.

  21. 21

    Ellington, A.D. and Szostak, J.W. . 1990. In vitro selection of RNA molecules that bind specific ligands. Nature 346: 818–822.

  22. 22

    Huizenga, D.E. and Szostak, J.W. . 1995. A DNA aptamer that binds adeno-sine and ATP. Biochemistry 34: 656–665.

  23. 23

    von Ahsen, U. and Schroeder, R. 1993. RNA as a catalyst: Natural and 60. designed ribozymes. BioEssays 15: 299–307.

  24. 24

    Sigurdsson, S.T. and Eckstein, F. . 1995. Structure-function relationships of hammerhead ribozymes: from understanding to applications. Trends Biotech. 13: 286–289.

  25. 25

    Cate, J.H., Gooding, A.R., Podell, E., Zhou, K., Golden, B.L., Kundrot, C.E. et al. 1996. Crystal structure of a group I ribozyme domain: Principles of RNA packing. Science 273: 1678–1685.

  26. 26

    Moras, D. 1997. A major leap toward the tertiary structure of large RNAs. RNA. 3: 111–113.

  27. 27

    Wu, T. and Orgel, L.E. . 1992. Nonenzymatic template-directed synthesis on 64. oligodeoxycytidylate sequences in hairpin oligodeoxynucleotides. J. Am. Chem. Soc. 114: 317–322.

  28. 28

    von Kiedrowski, G. 1986. A self-replicating hexadeoxynucleotide. Angew. Chem. Int. Ed. Engl. 25: 932–935.

  29. 29

    Dervan, P. and Luebke, K. . 1989. Nonenzymatic ligation of oligodeoxyribonu- cleotides on a duplex DNA template by triple-helix formation. J. Am. Chem. Soc. 111: 8733–8735.

  30. 30

    Li, T. and Nicolaou, K.C. . 1994. Chemical self-replication of palindromic 67. duplex DNA. Nature 369: 218–220.

  31. 31

    Breaker, R.R. and Joyce, G.F. . 1994. A DNA enzyme that cleaves RNA. Chem. & Biol. 1: 223–229.

  32. 32

    Breaker, R.R. and Joyce, G.F. 1995. A DNA enzyme with Mg2+-dependent RNA phosphoesterase activity. Chem. & Biol. 2: 655–660.

  33. 33

    Cuenoud, B. and Szostak, J.W. . 1995. A DNA metalloenzyme with DNA ligase activity. Nature 375: 611–614.

  34. 34

    Carmi, N., Shultz, L.A. and Breaker, R.R. 1996. In vitro selection of self-cleaving DNAs. Chem. & Biol. 3: 1039–1046.

  35. 35

    Walsh, C. 1979. Enzymatic Reaction Mechanisms. W.H. Freeman, New York.

  36. 36

    Fersht, A. 1985. Enzyme Structure and Mechanism. W.H. Freeman, New York.

  37. 37

    Kraut, J. 1988. How do enzymes work? Science 242: 533–540.

  38. 38

    Piccirilli, J.A., Krauch, T., Moroney, S.E. and Benner, S.A. 1990. Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic. alphabet. Nature 343: 33–37.

  39. 39

    Yarus, M. 1993. How many catalytic RNAs? Ions and the Cheshire cat conjecture. FASEB J. 7: 31–39.

  40. 40

    Connell, G.J. and Christian, E.L. 1993. Utilization of cofactors expands metabolism in a new RNA World. Orig. Life 23: 291–297.

  41. 41

    Corey, M.J. and Corey, E. 1996. On the failure of de novo-designed peptides as biocatalysts. Proc. Natl. Acad. Sci. USA 93: 11428–11434.

  42. 42

    Benkovic, S.J. 1996. The key is in the pocket. Nature 383: 23–24.

  43. 43

    Sanger, W. 1984. pp. 220–241 in Principles of nucleic acid structure. Springer-Verlag, New York.

  44. 44

    Kahn, A.S. and Roe, B.A. 1988. Aminoacylation of synthetic DNAs corresponding to Escherichia coli phenylalanine and lysine tRNAs. Science 241: 74–79.

  45. 45

    Perreault, J., Pon, R.T., Jiang, M., Usman, N., Pika, J., Ogilvie, K.K. and Cedergren, R. 1989. The synthesis and functional evaluation of RNA and DNA polymers having the sequence of Escherichia coli tRNAfmet. Eur. J. Biochem. 186: 87–93.

  46. 46

    Paquette, J., Nicoghosian, K., Qi, G., Beauchemin, N. and Cedergren, R. 1990. The conformation of single-stranded nucleic acids: tDNA versus tRNA. Eur. J. Biochem. 189: 259–265.

  47. 47

    Yang, J., Usman, N., Chartrand, P. and Cedergren, R. 1992. Minimum ribo-nucleotide requirement for catalysis by the RNA hammerhead domain. Biochemistry 31: 5005–5009.

  48. 48

    Chartrand, P., Harvey, S.C., Ferbeyre, G., Usman, N. and Cedergren, R. 1995. An oligodeoxyribonucleotide that supports catalytic activity in the hammerhead ribozyme domain. Nucleic Acids Res. 23: 4092–4096.

  49. 49

    Woese, C.R., Gutell, R.R., Gupta, R. and Noller, H.F. 1983. Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol. Rev. 47: 621–669.

  50. 50

    Gutell, R.R. and Fox, G.E. 1988. A compilation of large subunit RNA 83. sequences in a structural format. Nucleic Acids Res. 16: r175–r269.

  51. 51

    Tuerk, C., Gauss, P., Thermes, C., Groebe, D.R., Gayle, M., Guild, N. et al. 1988. CUUCGG hairpins: Extraordinarily stable RNA secondary structures associated with various biochemical processes. Proc. Natl. Acad. Sci. USA 85: 1364–1368.

  52. 52

    Cheong, C., Varani, G. and Tinoco, I., Jr. 1990. Solution structure of an unusually stable RNA hairpin, 5′GGAC(UUCG)GUCC. Nature 346: 680–682.

  53. 53

    Heus, H.A. and Pardi, A. 1991. Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops. Science. 253: 191–194.

  54. 54

    SantaLucia, J., Jr Kierzek, R. and Turner, D.H. 1992. Context dependence 90. of hydrogen bond free energy revealed by substitutions in an RNA hairpin. Science 256: 217–219.

  55. 55

    Nadeau, J.G. and Gilham, P.T. 1985. Anomalous hairpin formation in an oligodeoxyribonucleotide. Nucl. Acids Res. 13: 8259–8274.

  56. 56

    Hirao, I., Nishimura Y., Naraoka, T., Watanabe, K., Arata, Y. and Miura, K. 1989. Extraordinary stable structures of short single-stranded DNA fragments containing a specific base sequence: d(GCGAAAGC). Nucl. Acids Res. 17: 2223–2231.

  57. 57

    Hilbers, C.W., Blommers, M.J.J. and van de Ven, F. J.M. 1991. High resolution NMR studies of DNA hairpins with four nucleotides in the loop region. Nucleosides Nucleotides 10: 61–80.

  58. 58

    Pyle, A.M., Murphy, F.L. and Cech, T.R. 1992. RNA substrate binding site in the catalytic core of the Tetrahymena ribozyme. Nature 358: 123–128.

  59. 59

    Strobel, S.A. and Cech, T.R. 1993. Tertiary interactions with the internal guide sequence mediate docking of the helix into the catalytic core of the Tetrahymena ribozyme. Biochemistry 32: 13593–13604.

  60. 60

    Jaeger, L., Michel F. and Westhof, E . 1994. Involvement of a GNRA tetraloop in long-range RNA tertiary interactions. J. Mol. Biol. 236: 1271–1276.

  61. 61

    Murphy, F.L. and Cech, T.R. 1994. GAAA tetraloop and conserved bulge stabilize tertiary structure of a group I intron domain. J. Mol. Biol. 236: 49–63.

  62. 62

    Pley, H.W., Flaherty, K.M. and McKay, D.B. 1994. Model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix. Nature 372: 111–113.

  63. 63

    Costa, M. and Michel, F. 1995. Frequent use of the same tertiary motif by self-folding RNAs. EMBO J. 14: 1276–1285.

  64. 64

    Gold, L. 1995. Oligonucleotides as research, diagnostic, and therapeutic agents. J. Biol. Chem. 270: 13581–13584.

  65. 65

    Bock, L.C., Griffin, L.C., Latham, J.A., Vermaas, E.H. and Toole, J.J. 1992. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355: 564–566.

  66. 66

    Ellington, A.E. and Szostak, J.W. 1992. Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 355: 850–852.

  67. 67

    Schneider, D.J., Feigon, J., Hostomsky, Z. and Gold L 1995 High-affinity ssDNA inhibitors of the reverse transcriptase of type 1 Human Immunodeffi-ciency Virus. Biochemistry 34: 9599–9610.

  68. 68

    Lin Y., Padmapriya, Y.L, Morden, K.M., and Jayasena, S.D. 1995. Peptide conjugation to an in vitro-selected DNA ligand improves enzyme inhibition. Proc. Natl. Acad. Sci. USA 92: 11044–11048.

  69. 69

    Latham, J.A., Johnson, R. and Toole, J.J. 1994. The application of a modified nucleotide in aptamer selection: novel thrombin aptamers containing 5-(1-pentynyl)-2′-deoxyuridine. Nucl. Acids Res. 22: 2817–2822.

  70. 70

    Wyatt, J.R., Vickers, T.A., Robertson, J.L., Buckheit, R.W., Jr Klimkait, T., DeBaets, E. et al 1994. Combinatorially selected guanosine-quartet structure is a potent inhibitor of human immunodeficiency virus envelope-mediated cell fusion. Proc. Natl. Acad. Sci. USA 91: 1356–1360.

  71. 71

    Jenison, R.D., Gill, S.C., Pardi, A. and Polisky, B. 1994. High-resolution molecular discrimination by RNA. Science 263: 1425–1429.

  72. 72

    Guschlbauer, W., Chantot, J.-F. and Thiele, D. 1990. Four-stranded nucleic acid structures 25 years later: from guanosine gels to telomeric DNA. J. Biomol. Struct. Dyn. 8: 491–511.

  73. 73

    Williamson, J.R. 1994. G-quartet structures in telomeric DNA. Annu. Rev. Biophys. Biomol. Struct. 23: 703–730.

  74. 74

    Fang, G. and Cech, T.R. 1993. The B subunit of Oxytricha telomere-binding protein promotes G-quartet formation by telomeric DNA. Cell 74: 875–885.

  75. 75

    Wang, K.Y., McCurdy, S., Shea, R.G., Swaminathan, S. and Bolton P.H. 1993. A DNA aptamer which binds to and inhibits thrombin exhibits a new structural motif for DNA. Biochemistry 32: 1899–1904.

  76. 76

    Macaya, R.F., Schultze, P., Smith, F.W., Roe, J.A. and Feigon, J. 1993. Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution. Proc. Natl. Acad. Sci. USA 90: 3745–3749.

  77. 77

    Schultze, P., Macaya, R.F. and Feigon, J. 1994. Three-dimentional solution structure of the thrombin-binding DNA aptamer d(GGTTGGTGTGGTTGG). J. Mol. Biol. 235: 1532–1547.

  78. 78

    Macaya, R.F., Waldron, J.A., Beutel, B.A., Gao, H., Joesten, M.E., Yang, M. et al. 1995. Structural and functional characterization of potent antithrombic Oligonucleotides possessing both quadruplex and duplex motifs. Biochemistry 34: 4478–4492.

  79. 79

    Tsiang, M., Gibbs, C.S., Griffin, L.C., Dunn, K.E. and Leung, L.L.K. 1995. Selection of a suppressor mutation that restores affinity of an oligonucleotide inhibitor for thrombin using in vitro genetics. J. Biol. Chem. 270: 19370–19376.

  80. 80

    Li Y., Geyer, C.R., and Sen, D. 1996. Recognition of anionic porphyrins by DNA aptamers. Biochemistry 35: 6911–6922.

  81. 81

    Faulhammer, D. and Famulok, M. 1996. Ca2+ as a cofactor for a novel RNA-cleaving deoxyribozyme. Angew. Chem. Int. Ed. Engl. 35: 2837–2841.

  82. 82

    Li, Y. and Sen, D. 1996. A catalytic DNA for porphyrin metallation. Nature Struct. Biol. 3: 743–747.

  83. 83

    Matthews, B.W. 1993. Structural and genetic analysis of protein folding and stability. Curr. Opin. Struct. Biol. 3: 589–593.

  84. 84

    Cordes, M.H.J., Davidson, A.R. and Sauer, R.T. 1996. Sequence space, folding and protein design. Curr. Opin. Struct. Biol. 6: 3–10.

  85. 85

    Chapman, M.S. and Rossmann, M.G. 1995. Single-stranded DNA-protein interactions in canine parvovirus. Structure 3: 151–162.

  86. 86

    Gilbert, W. 1986. The RNA World. Nature 319: 618.

  87. 87

    Joyce, G.F. 1989. RNA evolution and the origins of life. Nature 338: 217–224.

  88. 88

    Orgel, L.E. 1994. The origin of life on the earth. Sclent. Am. 271: 77–83.

  89. 89

    Lee, D.H., Granja, J.R., Martinez, J.A., Severin, K. and Ghadiri, M.R. 1996. A self-replicating peptide. Nature 382: 525–528.

  90. 90

    Kazakov, S.A., Astashkina, T.G., Mamaev, S.V. and Vlassov, V.V. 1988. Site-specific cleavage of single-stranded DNAs at unique sites by a copper-dependent redox reaction. Nature 335: 186–188.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Breaker, R. DNA enzymes. Nat Biotechnol 15, 427–431 (1997). https://doi.org/10.1038/nbt0597-427

Download citation

Further reading