Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

A System for Production of Commercial Quantities of Human Lactoferrin: A Broad Spectrum Natural Antibiotic

Abstract

We previously reported the production of limited quantities of biologically active recombinant human lactoferrin in the filamentous fungus, Aspergillus oryzae. In the present study, we report a modification of this production system combined with a classical strain improvement program that has enabled production of levels of recombinant human lactoferrin in excess of 2 g/l. The protein was expressed in Aspergillus awamori as a glucoamylase fusion polypeptide which was secreted into the growth medium and processed to mature human lactoferrin by an endogenous KEX-2 peptidase. The recombinant protein retains full biological activity in terms of its ability to bind iron and human enterocyte receptors. Furthermore, the recombinant protein functions as a potent broad spectrum antimicrobial protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Masson, P.L. and Heremans, J.F. 1971. Lactoferrin in milk from different species. Comp. Biochem. Physiol. 39: 119–129.

    Article  CAS  Google Scholar 

  2. Hennart, P.F., Brasseur, D.J., Delogne-Desnoeck, I.B., Dramaix, M.M. and Robyn, C.E. 1991. Lysozyme, lactoferrin and secretory immunoglobin A content in breast milk: Influence of duration of lactation, nutrition status, prolactin status, and parity of mother. Am. J. Clin. Nutr. 53: 32–39.

    Article  CAS  PubMed  Google Scholar 

  3. Masson, P.L., Heremans, J.F. and Dive, C. 1966. An iron-binding protein common to many external secretions. Clin. Chim. Acta. 14: 735–739.

    Article  CAS  Google Scholar 

  4. Pentecost, B.T. and Teng, C.T. 1987. Lactotransferrin is the major estrogen inducible protein of mouse uterine secretions. J. Biol. Chem. 262: 10134–10139.

    CAS  PubMed  Google Scholar 

  5. Yu, L.-C. and Chen, Y.-H. 1993. The developmental profile of lactoferrin. Biochem. J. 296: 107–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Masson, P.L., Heremans, J.F. and Schonne, E. 1969. Lactoferrin, an iron-binding protein in neutrophilic leukocytes. J. Exp. Med. 130: 643–658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Anderson, B.F., Baker, H.M., Morris, G.E., Rice, D.W. and Baker, E.N. 1989. Structure of human lactoferrin: Crystallographic structure analysis and refinement at 2.8A resolution. J. Mol. Biol. 209: 711–734.

    Article  CAS  PubMed  Google Scholar 

  8. Anderson, B.F., Baker, H.M., Morris, G.E., Rumball, S.V. and Baker, E.N. 1990. Apolactoferrin structure demonstrates ligand-induced conformational change in transferrins. Nature 344: 784–787.

    Article  CAS  PubMed  Google Scholar 

  9. Sanchez, L., Calvo, M. and Brock, J.H. 1992. Biological role of lactoferrin. Arch. Dis. Child. 67: 657–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Iyer, S. and Lonnerdal, B. 1993. Lactoferrin, lactoferrin receptors and iron metabolism. Eur. J. Clin. Nutr. 47: 232–241.

    CAS  PubMed  Google Scholar 

  11. Oram, J.D. and Reiter, B. 1968. Inhibition of bacteria by lactoferrin and other iron-chelating agents. Biochem. Biophys. Acta. 170: 351–365.

    Article  CAS  PubMed  Google Scholar 

  12. Arnold, R.R., Brewer, M. and Gauthier, J.J. 1980. Bactericidal activity of human lactoferrin: Sensitivity of a variety of microorganisms. Infect. Immun. 28: 893–898.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Trumpler, U., Straub, P.W. and Rosenmund, A. 1989. Antibacterial prophylaxis with lactoferrin in neutropenic patients. Eur. J. Clin. Microbiol. Infect. Dis. 8: 310–313.

    Article  CAS  PubMed  Google Scholar 

  14. Zagulski, T., Lipinski, P., Zagulska, A., Broniek, S. and Jarzabek, Z. 1989. Lactoferrin can protect mice against a lethal dose of Escherichia coli in experimental infection in vivo. Br. J. Exp. Pathol. 70: 697–704.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bishop, J.A., Schanbacher, F.L., Ferguson, L.C. and Smith, K.L. 1976. In vitro growth inhibition of mastitis causing coliform bacteria by bovine apolactoferrin and reversal of inhibition by citrate and high concentrations of apolactoferrin. Infect. Immun. 14: 911–918.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bullen, J.J., Rogers, H.J. and Griffiths, E. 1978. Role of iron in bacterial infection. Curr. Top. Microbiol. Immunol. 80: 1–35.

    CAS  PubMed  Google Scholar 

  17. Reiter, B. 1978. Review of non-specific and microbial factors in milk. Ann. Rech. Vet. 9: 205–224.

    CAS  PubMed  Google Scholar 

  18. Arnold, R.R., Cole, M.F. and McGhee, J.R. 1977. A bactericidal effect for human lactoferrin. Science 197: 263–265.

    Article  CAS  PubMed  Google Scholar 

  19. Bellamy, W., Takase, M., Yamauchi, K., Wakabayashi, H., Kawase, K. and Tomita, M. 1992. Identification of the bactericidal domain of lactoferrin. Biochem. Biophys. Acta. 1121: 130–136.

    CAS  PubMed  Google Scholar 

  20. Ellison, R.T., Giehl, T.-J. and LaForce, F.M. 1988. Damage of the outer membrane of enteric Gram-negative bacteria by lactoferrin and transferrin. Infect. Immun. 56: 2774–2781.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Yamauchi, K., Tomita, M., Giehl, T.J. and Ellison, R.T. 1993. Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. Infect. Immun. 61: 719–728.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mazurier, J., Legrand, D., Hu, W.-L., Montreuil, J. and Spik, G. 1989. Expression of human lactotransferrin receptors in phytohemagglutinin stimulated human peripheral blood lymphocytes: Isolation of the receptors by antiligand-affinity chromatography. Eur. J. Biochem. 179: 481–487.

    Article  CAS  PubMed  Google Scholar 

  23. Birgens, H.S., Hansen, N.E., Karle, H. and Kristensen, L.O. 1983. Receptor binding of lactoferrin by human monocytes. Br. J. Haematot. 54: 383–391.

    Article  CAS  Google Scholar 

  24. van Snick, J.L. and Masson, P.L. 1976. The binding of human lactoferrin to mouse peritoneal cells. J. Exp. Med. 144: 1568–1580.

    Article  CAS  PubMed  Google Scholar 

  25. Leveugle, B., Mazurier, J., Legrand, D., Mazurier, C., Montreuil, J. and Spik, G. 1993. Lactotransferrin binding to its platelet receptor inhibits platelet aggregation. Eur. J. Biochem. 213: 1205–1211.

    Article  CAS  PubMed  Google Scholar 

  26. Machnicki, M., Zimecki, M. and Zagulski, T. 1993. Lactoferrin regulates the release of tumour necrosis factor alpha and interleukin 6 in vivo. Int. J. Exp. Path. 74: 433–439.

    CAS  Google Scholar 

  27. Crouch, S.P.M., Slater, K.J. and Fletcher, J. 1992. Regulation of cytokine release from mononuclear cells by the iron-binding protein lactoferrin. Blood 80: 235–240.

    CAS  PubMed  Google Scholar 

  28. Cox, T.M., Mazurier, J., Spik, G., Montreuil, J. and Peters, T.J. 1979. Iron binding proteins and influx of iron across the duodenal brush border. Evidence for specific lactotransferrin receptors in the human intestine. Biochem. Biophys. Acta. 558: 129–141.

    Google Scholar 

  29. Ward, P.P., May, G.S., Headon, D.R. and Conneely, O.M. 1992. An inducible expression system for the production of human lactoferrin in Aspergillus niduslans. Gene 122: 219–223.

    Article  CAS  PubMed  Google Scholar 

  30. Ward, P.P., Lo, J.-Y., Duke, M., May, G.S., Headon, D.R. and Conneely, O.M. 1992. Production of biologically active recombinant human lactoferrin in Aspergillus oryzae. Bio/Technology 10: 784–789.

    CAS  Google Scholar 

  31. Jeenes, D.J., Mackenzie, D.A., Roberts, I.N. and Archer, D.B. 1991. Heterologous protein production by filamentus fungi. Biotech. Gen. Eng. Rev. 9: 327–367.

    CAS  Google Scholar 

  32. Dunn-Coleman, N.S., Bloebaum, P., Berka, R.M., Bodie, E., Robinson, N., Armstrong, G., Ward, M., Przetak, M., Carter, G.L., LaCost, R., Wilson, L.J., Kodama, K.H., Bower, B., Lamsa, M. and Heinsohn, H. 1991. Commercial levels of chymosin production by Aspergillus. Bio/Technology 9: 976–981.

    Article  CAS  Google Scholar 

  33. Ward, M., Wilson, L.J., Kodama, K.H., Rey, M.W. and Berka, R.M. 1990. Improved production of chymosin in Aspergillus by expression as a glucoamylase-chymosin fusion. Bio/Technology 8: 435–440.

    CAS  Google Scholar 

  34. Jeenes, D.J., Mackenzie, D.A. and Archer, D.B. 1993. A truncated glucoamylase gene fusion for heterologous protein secretion from Aspergillus niger. FEMS Microbiol. Lett. 107: 267–272.

    Article  CAS  PubMed  Google Scholar 

  35. Devchand, M., Gwynne, D., Buxton, F. and Davies, R. 1989. An efficient cell-free translation system from Aspergillus nidulans and in vitro translocation of prepro-a mating factor across Aspergillus microsomes. Curr. Genet. 14: 561–566.

    Article  Google Scholar 

  36. Vilja, P., Krohn, K. and Tuohimaa, P. 1985. A rapid and sensitive noncompetitive avidin-biotin assay for lactoferrin. J. Immunol. Meth. 76: 73–83.

    Article  CAS  Google Scholar 

  37. Spik, G., Coddenville, B. and Montreuil, J. 1988. Comparative study of the primary structures of sero-, lacto- and ovatransferrin glycans from different species. Biochem. 70: 1459–1469.

    Article  CAS  Google Scholar 

  38. Pinto, M., Robine-Leon, S., Appay, M.-D., Kedinger, M., Triadou, N., Dussaulx, E., Lacroix, B., Simon-Assmann, P., Haffer, K., Fogh, J. and Zweibaum, A. 1983. Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol. Cell. 47: 323–330.

    Google Scholar 

  39. Scatchard, G. 1949. The attractions of proteins for small molecules and ions. Ann. NY Acad. Sci. 51: 660–672.

    Article  CAS  Google Scholar 

  40. Clark, J.H., Mitchell, W.C. and Guthrie, S.C. 1986. Triphenylethylene antiestrogen binding sites (TABS) specificity. J. Steroid Biochem. 26: 433–437.

    Article  Google Scholar 

  41. Metz-Boutigue, M.-H., Jolles, J., Mazurier, J., Schoertger, F., Legrand, D., Spik, G., Montreuil, J. and Jolles, P. 1984. Human lactotransferrin: amino acid sequence and structural comparisons with other transferrins. Eur. J. Biochem. 145: 659–676.

    Article  CAS  PubMed  Google Scholar 

  42. Kawakami, H. and Lonnedal, B. 1991. Isolation and function of a receptor for human lactoferrin in human fetal intestinal brush-border membrane. Am. J. Physiol. 261: G841–G846.

    CAS  PubMed  Google Scholar 

  43. Derisbourg, P., Wieruszeski, J.-M., Montreuil, J. and Spik, G. 1990. Primary structure of glycans isolated from human leucocyte lactotransferrin. Absence of fucose residues questions the propoesed mechanism of hyposideraemia. Biochem. J. 269: 821–825.

    Google Scholar 

  44. Saunders, G., Picknett, T.M., Tuite, M.F. and Ward, M. 1989. Heterologous gene expression in filamentous fungi. Trends in Biotechnol. 7: 283–287.

    Article  CAS  Google Scholar 

  45. Contreras, R., Carrez, D., Kinghorn, J.R., van der Hondel, C.A.M.J.J. and Pier, W. 1991. Efficient KEX2-like processing of a glucoamylase-interleukin-6 fusion protein by Aspergillus nidulans and secretion of mature interleukin 6. Bio/Technology 9: 378–381.

    CAS  Google Scholar 

  46. Nunberg, J.H., Meade, J.H., Cole, G., Lawyer, F.C., McCabe, P., Schweickart, V., Tal, R., Wittman, V.P., Flatgaard, J.E. and Innis, M.A. 1984. Molecular cloning and characterization of the glucoamylase gene of Aspergillus awamori. Mol. Cell. Biol. 4: 2306–2315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Boel, E., Hansen, M.T., Hjort, L., Hoegh, I. and Fill, N.P. 1984. Two different types of intervening sequences in the glucoamylase gene from Aspergillus niger. EMBO J. 3: 1581–1585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gangnol, A. 1987. Phleomycin resistance encoded by the ble gene. Mol. Gen. Genet. 207: 342–348.

    Article  Google Scholar 

  49. Tilbura, J., Scazzocchio, C., Taylor, G.G., Zabicky-Zissima, J.H., Lockington, R.A. and Davis, R.W. 1983. Transformation by integration in Aspergillus nidulans. Gene 26: 205–221.

    Article  Google Scholar 

  50. Carboral, J.M., Diez, B., Barredo, J.L., Alvarez, E. and Martin, J.F. 1987. High frequency transformation of penicilliun chrysogeneum. Bio/Technology 5: 494–497.

    Google Scholar 

  51. Masson, P.L. and Heremans, J.F. 1968. Metal-combining properties of human lactoferrin (Red Milk Protein). 1. The involvement of bicarbonate in the reaction. Eur. J. Biochem. 6: 579–584.

    Article  CAS  PubMed  Google Scholar 

  52. Stowell, K.M., Rado, T.A., Funk, W.D. and Tweedie, J.W. 1991. Expression of cloned human lactoferrin in baby-hamster kidney cells. Biochem. J. 276: 349–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rejman, J.J., Turner, J.D. and Oliver, S.P. 1994. Characterization of lactoferrin binding to the Mac-T bovine mammary epithelial cell line using a biotin-avidin technique. Int. J. Biochem. 26: 201–206.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ward, P., Piddington, C., Cunningham, G. et al. A System for Production of Commercial Quantities of Human Lactoferrin: A Broad Spectrum Natural Antibiotic. Nat Biotechnol 13, 498–503 (1995). https://doi.org/10.1038/nbt0595-498

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0595-498

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing