Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Piezoelectric Cell Growth Sensor

Abstract

We have developed a reusable piezoelectric sensor that enables rapid characterization of cell viability and response to cell-affecting agents. This is accomplished via a novel polymer transduction principle that involves reaction of a pH-sensitive amphoteric polymer with metabolically generated acid. Subsequent adhesion of the protonated polymer to the transducer surface causes a decrease in the sensor resonant frequency corresponding to the cell metabolic rate. This disclosure provides the first example of a piezoelectric sensor capable of detecting metabolic responses of viable cells. The sensor provides real-time measurement of cell metabolism and division rates, and antibiotic sensitivity. This technology provides the basis for an advanced piezoelectric sensor that does not require immobilized biological receptors and can be miniaturized without compromising signal-to-noise factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Habermehl, K.O. 1985. Rapid Methods and Automation in Microbiology and Immunology, Springer-Verlag, Berlin.

    Book  Google Scholar 

  2. Hattori, T. 1988. The Viable Count: Quantitative and Environmental Aspects, Brock-Springer, Madison.

    Google Scholar 

  3. McCormick, D. 1986. Detection technology: The key to environmental biotechnology. Bio/Technology 4: 419–422.

    Google Scholar 

  4. Nelson, W.H. 1985. Instrumental Methods for Rapid Microbiological Analysis, VCH, Wienheim.

    Google Scholar 

  5. Karube, I. 1987. Analytical device and method for analysis of biochemicals, microbes and cells. European Patent Application No. 86307115.5.

    Google Scholar 

  6. Ward, M.D. and Buttry, D.A. 1990. In-situ interfacial mass detection with piezoelectric transducers: Fundamentals and applications. Science In press

    Google Scholar 

  7. Sauerbrey, G. 1959. Verwendung von Schwingquarzen zur Wagung dunner Schichten und zur Mikrowagung. Z. Phys. 155: 206–222.

    Article  CAS  Google Scholar 

  8. Parce, J.W., Owicki, J.C., Kercso, K.M., Sigal, G.B., Wada, H.G., Muir, V.C., Bousse, L.J., Ross, K.L., Sikic, B.J. and McConnell, H.M. 1989. Detection of cell-affecting agents with a silicon biosensor. Science 246: 243–247.

    Article  CAS  Google Scholar 

  9. Foss, R.P. 1988. Acrylic amphoteric polymers. U.S. Patent 4,749,762.

    Google Scholar 

  10. Ingraham, J.L. 1987. Escherichia Coli and Salmonella Typhimurium Cellular and Molecular Biology. Neidhardt, F. C., Ingraham, J. L., Brooks, K., Magasanik, M., Schaechter, M., and Umbarger, H. E. (Eds.). American Society for Microbiology, Washington, D.C.

    Google Scholar 

  11. Gottschalk, G. 1987. Bacterial Metabolism, Verlag-Springer, New York.

    Google Scholar 

  12. Lasky, S.J. and Buttry, D.A. 1989. Sensors based on biomolecules immobilized on the piezoelectric quartz crystal microbalance . Chemical Sensors and Microinstrumentation 403: 237–251.

    Article  CAS  Google Scholar 

  13. Muramatsu, H., Tamiya, E. and Karube, I. 1989. Detection of odorants using lipid-coated piezoelectric crystal resonators. Anal. Chim. Acta 225: 399–408.

    Article  CAS  Google Scholar 

  14. Ballantine, D.S., Jr. Rose, S.L., Grate, J.W., and Wohltjen, H. 1986. Correlation of surface acoustic wave device coating responses with solubility properties and chemical structure using pattern recognition. Anal. Chem. 58: 3058–3066.

    Article  CAS  Google Scholar 

  15. Carey, W.P., Beebe, K.R., Kowalski, B.R., Illman, D.L. and Hirsh-feld, T. 1986. Selection of adsorbates for chemical sensor arrays by pattern recognition. Anal. Chem. 58: 149–153.

    Article  CAS  Google Scholar 

  16. Ema, K., Yokoyama, M., Nakamoto, T. and Moriizumi, T. 1989. Odour-sensing system using a quartz-resonator sensor array and neural-network pattern recognition. Sensors and Actuators 18: 291–296.

    Article  CAS  Google Scholar 

  17. Wenzel, S.W. and White, R.M. 1988. A multisensor employing an ultrasonic Lamb-wave oscillator. IEEE Trans. Elect. Dev. 35: 735–743.

    Article  Google Scholar 

  18. Ricco, A.J., Martin, S.J., Niemczyk, T.M. and Frye, G.C. 1989. Liquid-phase sensors based on acoustic plate mode devices. Chemical Sensors and Microinstrumentation 403: 191–207.

    Article  CAS  Google Scholar 

  19. Ward, M.D. 1988. Investigation of open circuit reactions of polymer films using the quartz crystal microbalance. Reactions of polyvinylfer-rocene films. J. Phys. Chem. 92: 2049–2054.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebersole, R., Foss, R. & Ward, M. Piezoelectric Cell Growth Sensor. Nat Biotechnol 9, 450–454 (1991). https://doi.org/10.1038/nbt0591-450

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0591-450

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing