Review Article | Published:

Alginate Biosynthesis: A Model System for Gene Regulation and Function in Pseudomonas

Bio/Technologyvolume 5pages469477 (1987) | Download Citation



Alginate is an exopolysaccharide of industrial and medical importance. Understanding the biochemistry, genetics and molecular biology of alginate biosynthesis by P. aeruginosa is undergoing rapid development. The alginate biosynthetic pathway has been partially deduced. Transcriptional activation of alginate gene(s) appears to be a critical step in the establishment of mucoidy. Studies on the regulation and function of the alg gene complex will significantly increase our knowledge of gene expression in Pseudomonas, and hopefully allow better control of the proliferation of mucoid strains in Cystic Fibrosis patients.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Evans, L.R. and Linker, A. 1973. Production and characterization of the slime polysaccharide of Pseudomonas aeruginosa. J. Bacteriol. 165: 510–516.

  2. 2

    Mian, F.A., Jarman, T.R. and Righelato, R.C. 1978. Biosynthesis of exopolysaccharide by Pseudomonas aeruginosa. J. Bacteriol. 134: 418–422.

  3. 3

    Govan, J.R.W. and Harrison, G.S. 1986. Pseudomonas aeruginosa and cystic fibrosis: unusual bacterial adaptation and pathogenesis. Microbiological Sciences 3: 302–308.

  4. 4

    Seymor, C.A. 1984. Bringing molecular biology to the bedside: Cystic fibrosis. BioEssays 1: 38–40.

  5. 5

    Burns, M.W. and May, J.R. 1968. Bacterial precipitins in serum of patients with cystic fibrosis. Lancet i: 270–272.

  6. 6

    Govan, J.R.W. 1975. Mucoid strains of Pseudomonas aeruginosa: The influence of culture medium on the stability of mucus production. J. Med. Microbiol. 8: 513–522.

  7. 7

    Govan, J.R.W. and Fyfe, J.A.M. 1978. Mucoid Pseudomonas aeruginosa and cystic fibrosis: Resistance of the mucoid form to carbenicillin, flucloxacillin and tobramycin and the isolation of mucoid variants in vitro. J. Antimicrob. Chemother. 4: 233–240.

  8. 8

    Martin, D.R. 1973.Mucoid variation in Pseudomonas aeruginosa induced by the action of phage. J. Med. Microbiol. 6: 111–118.

  9. 9

    Deretic, V., Tomasek, P.H., Darzins, A. and Chakrabarty, A.M. 1986. Gene amplification induces mucoid phenotype in rec-2 Pseudomonas aeruginosa exposed to kanamycin. J. Bacteriol. 165: 510–516.

  10. 10

    Darzins, A. and Chakrabarty, A.M. 1984. Cloning of genes controlling alginate biosynthesis from a mucoid cystic fibrosis isolate of Pseudomonas aeruginosa. J. Bacteriol. 159: 9–18.

  11. 11

    Goldberg, J.B. and Ohman, D.E. 1984. Cloning and expression of a gene involved in the production of alginate. J. Bacteriol. 158: 1115–1121.

  12. 12

    Darzins, A., Wang, S.-K., Vanags, R.I. and Chakrabarty, A.M. 1985. Clustering of mutations affecting alginic acid biosynthesis in mucoid Pseudomonas aeruginosa. J. Bacteriol. 164: 516–524.

  13. 13

    Fyfe, J.A.M. and Govan, J.R.W. 1980. Alginate synthesis in mucoid Pseudomonas aeruginosa: A chromosomal locus involved in control. J. Gen. Microbiol. 119: 443–450.

  14. 14

    Holloway, B.W. and Morgan, A.F. 1986. Genome organization in Pseudomonas. Ann. Rev. Microbiol. 40: 79–105.

  15. 15

    Lessie, T.G. and Phibbs, P.V. 1984. Alternative pathways of carbohydrate utilization in pseudomonads. Ann. Rev. Microbiol. 38: 359–387.

  16. 16

    Darzins, A., Nixon, L.L., Vanags, R.I. and Chakrabarty, A.M. 1985. Cloning of Escherichia coli and Pseudomonas aeruginosa phosphomannose isomerase genes and their expression in alginate-negative mutants of Pseudomonas aeruginosa. J. Bacteriol. 161: 249–257.

  17. 17

    Gill, J.F., Deretic, V. and Chakrabarty, A.M. 1986. Overproduction and assay of P. aeruginosa phosphomannose isomerase. J. Bacteriol. 167: 611–615.

  18. 18

    Deretic, V., Gill, J.F. and Chakrabarty, A.M. 1987. Gene algD coding for GDPmannose dehydrogenase is transcriptionally activated in mucoid Pseudomonas aeruginosa. J. Bacteriol. 169: 351–358.

  19. 19

    Piggot, N.H., Sutherland, I.W. and Jarman, T.R. 1981. Enzymes involved in the biosynthesis of alginate by P. aeruginosa. Eur. J. Appl. Microbiol. Biotechnol. 13: 179–183.

  20. 20

    Pindar, D.F. and Bucke, C. 1975. The biosynthesis of alginic acid by Azotobacter vinelandii. Biochem. J. 152: 617–622.

  21. 21

    Sutherland, I.W. 1982. Biosynthesis of microbial exopolysaccharides. Microb. Physiol. 23: 74–150.

  22. 22

    Darzins, A., Frantz, B., Vanags, R.I. and Chakrabarty, A.M. 1986. Nucleotide sequence analysis of the phosphomannose isomerase gene (pmi) of Pseudomonas aeruginosa and comparison with the corresponding Escherichia coli gene manA. Gene 42: 293–302.

  23. 23

    Deretic, V., Gill, J.F. and Chakrabarty, A.M. 1987. Pseudomonas infection in cystic fibrosis: A promoter with multiple direct repeats controlling bacterial mucoidy. Proc. Natl. Acad. Sci. USA. (Submitted).

  24. 24

    Ohman, D.E., Goldberg, J.B., Flynn, J.A.L. and Powell, S.K. 1985. Genetics of exopolysaccharide production by mucoid Pseudomonas aeruginosa. Antibiot. Chemother. 36: 13–22.

  25. 25

    Inouye, S., Nakazawa, A. and Nakazawa, T. 1984. Nucleotide sequence surrounding the transcription initiation site of xylABC operon on TOL plasmid of Pseudomonas putida. Proc. Natl. Acad. Sci. USA 81: 1688–1691.

  26. 26

    Inouye, S., Nakazawa, A. and Nakazawa, T. 1984. Nucleotide sequence of the promoter region of the xylDEGF operon on TOL plasmid of Pseudomonas putida. Gene 29: 323–330.

  27. 27

    Inouye, S., Nakazawa, A. and Nakazawa, T. 1985. Determination of the transcription initiation site and identification of the protein product of the regulatory gene xylR for xyl operons on the TOL plasmid. J. Bacteriol. 163: 863–869.

  28. 28

    Mermod, N., Lehrbach, P.R., Reineke, W. and Timmis, K.N. 1984. Transcription of the TOL plasmid toluate catabolic pathway operon of Pseudomonas putida is determined by a pair of co-ordinately and positively regulated overlapping promoters. EMBO J. 3: 2461–2466.

  29. 29

    Schell, M.A. 1986. Homology between nucleotide sequences of promoter regions of nah and sal operons of NAH7 plasmid of Pseudomonas putida. Proc. Natl. Acad. Sci. USA 83: 369–373.

  30. 30

    Pritchard, A.E. and Vasil, M.L. 1986. Nucleotide sequence and expression of a phosphate-regulated gene encoding a secreted hemolysin of Pseudomonas aeruginosa. J. Bacteriol. 167: 291–298.

  31. 31

    Grant, C.C.R. and Vasil, M.L. 1986. Analysis of transcription of the exotoxin A gene of Pseudomonas aeruginosa. J. Bacteriol. 168: 1451–1456.

  32. 32

    Loery, S. 1986. Effect of iron on accumulation of exotoxin A-specific mRNA in Pseudomonas aeruginosa. J. Bacteriol. 168: 1451–1456.

  33. 33

    Silhavy, T.J. and Beckwith, J.R. 1985. Uses of lac fusions for the study of biological problems. Microbiol. Rev. 49: 398–418.

  34. 34

    Nakazawa, T., Inouye, S. and Nakazawa, A. 1985. Positive regulation and transcription initiation of xyl operons in TOL plasmid, p. 243–259. In: Plasmids in Bacteria. Helinski, D.R. et al. (eds.). Plenum Press, New York.

  35. 35

    Jaurin, B. and Cohen, S.N. 1985. Streptomyces contain Escherichia coli-type A+T-rich promoters having novel structural features. Gene 39: 191–201.

  36. 36

    Ebright, R.H. 1986. Proposed amino acid-base pair contacts for 13 sequence-specific DNA binding proteins, p. 207–219. In: Protein Structure, Folding and Design, Oxender, D. (ed.). Alan Liss, New York.

  37. 37

    Ebright, R.H. 1986. Evidence for a contact between glutamine-18 of lac represser and base pair 7 of lac operator. Proc. Natl. Acad. Sci. USA 83: 303–307.

  38. 38

    Bagdasarian, M.M., Amann, E., Lurz, R., Ruckert, B. and Bagdasarian, M. 1983. Activity of the hybrid trp-lac (tac) promoter of Escherichia coli in Pseudomonas putida. Gene 26: 273–282.

  39. 39

    Ditta, G., Scmidhauser, T., Yakobson, E., Lu, P., Liang, X.-W., Finlay, D.R., Guiney, D. and Helinski, D.R. 1985.Plasmids related to the broad host range vector, pRK290, useful for gene cloning and for monitoring gene expression. Plasmid 13: 149–153.

  40. 40

    Raibaud, O. and Schwartz, M. 1984. Positive control of transcription initiation in bacteria. Ann. Rev. Genet. 18: 173–206.

  41. 41

    Reznikoff, W.S., Siegele, D.A., Cowing, D.W. and Gross, C.A. 1985. The regulation of transcription initiation in bacteria. Ann. Rev. Genet. 19: 355–387.

  42. 42

    McClure, W.R. 1985. Mechanism and control of transcription initiation in prokaryotes. Ann. Rev. Biochem. 54: 171–204.

  43. 43

    Dixon, R. 1986. The xylABC promoter from the Pseudomonas putida TOL plasmid is activated by nitrogen regulatory genes in Escherichia coli. Mol. Gen. Genet. 203: 129–136.

  44. 44

    Gragerov, A.I., Chenchik, A.A., Aivasashvilli, V.A., Beabealashvilli, R.Sh. and Nikiforov, V.G. 1984. Escherichia coli and Pseudomonas putida RNA polymerases display identical contacts with promoters. Mol. Gen. Genet. 195: 511–515.

  45. 45

    Hirschman, J., Wang, P.-K., Sei, K., Keener, J. and Kustu, S. 1985. Products of nitrogen regulatory genes ntrA and ntrC of enteric bacteria activate gln A transcription in vitro: Evidence that the ntrA product is a σ factor. Proc. Natl. Acad. Sci. USA 82: 7525–7529.

  46. 46

    Merrick, M.J. and Gibbins, J.R. 1985. The nucleotide sequence of the nitrogen-regulation gene ntrA of Klebsiella pneumoniae and comparison with conserved features in bacterial RNA polymerase sigma factors. Nucl. Acids Res. 13: 7607–7620.

  47. 47

    Khan, H., Buck, M. and Dixon, R. 1986. Deletion loop mutagenesis of the nifL promoter from Klebsiella pneumoniae: Role of the –26 to –12 region in promoter function. Gene 45: 281–288.

  48. 48

    Buck, M. 1986. Deletion analysis of the Klebsiella pneumoniae nitrogenase promoter: Importance of spacing between conserved sequences around −12 and −24 for activation by the nifA and ntrC (glnG) products. J. Bacteriol. 166: 545–551.

  49. 49

    Buck, M., Miller, S., Drummond, M. and Dixon, R. 1986. Upstream activator sequences are present in the promoters of nitrogen fixation genes. Nature 320: 374–378.

  50. 50

    Inouye, S., Nakazawa, A. and Nakazawa, T. 1986. Nucleotide sequence of the regulatory gene xylS on the Pseudomonas putida TOL plasmid and identification of the protein product. Gene 44: 235–242.

  51. 51

    Johnson, K., Parker, M.L. and Lory, S. 1986. Nucleotide sequence and transcription initiation site of two Pseudomonas aeruginosa pilin genes. J. Biol. Chem. 261: 15703–15708.

  52. 52

    Minton, N.P. and Clark, L.E. 1985. Identification of the promoter of the Pseudomonas gene coding for carboxypeptidase G2. J. Mol. Appl. Genet. 2: 26–35.

  53. 53

    Inouye, S., Asa, Y., Nakazawa, A. and Nakazawa, T. 1986. Nucleotide sequence of a DNA segment promoting transcription in Pseudomonas putida. J. Bacteriol. 166: 739–745.

  54. 54

    Smith, C.A., Shingler, V. and Thomas, C.M. 1984. The trfA and trfB promoter regions of broad host range plasmid RK2 share common potential regulatory sequences. Nucl. Acids Res. 12: 3619–3630.

  55. 55

    Amann, E., Brosius, J. and Ptashne, M. 1983. Vectors bearing a hybrid trp-lac promoter useful for regulated expression of cloned genes in Escherichia coli. Gene 15: 167–178.

  56. 56

    Dickson, R.C., Abelson, J., Barnes, W.M., Reznikoff, W.S. 1975. Genetic regulation: The lac control region. Science 182: 27–35.

  57. 57

    Calos, M. 1978. The promoter of the lactose represser gene. Nature 274: 762–765.

Download references

Author information


  1. Department of Microbiology and Immunology, Health Sciences Center, University of Illinois at Chicago, Chicago, IL, 60612

    • V. Deretic
    • , J. F. Gill
    •  & A. M. Chakrabarty


  1. Search for V. Deretic in:

  2. Search for J. F. Gill in:

  3. Search for A. M. Chakrabarty in:

About this article

Publication history

Issue Date


Further reading