Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Alginate Biosynthesis: A Model System for Gene Regulation and Function in Pseudomonas

Abstract

Alginate is an exopolysaccharide of industrial and medical importance. Understanding the biochemistry, genetics and molecular biology of alginate biosynthesis by P. aeruginosa is undergoing rapid development. The alginate biosynthetic pathway has been partially deduced. Transcriptional activation of alginate gene(s) appears to be a critical step in the establishment of mucoidy. Studies on the regulation and function of the alg gene complex will significantly increase our knowledge of gene expression in Pseudomonas, and hopefully allow better control of the proliferation of mucoid strains in Cystic Fibrosis patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Evans, L.R. and Linker, A. 1973. Production and characterization of the slime polysaccharide of Pseudomonas aeruginosa. J. Bacteriol. 165: 510–516.

    Google Scholar 

  2. Mian, F.A., Jarman, T.R. and Righelato, R.C. 1978. Biosynthesis of exopolysaccharide by Pseudomonas aeruginosa. J. Bacteriol. 134: 418–422.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Govan, J.R.W. and Harrison, G.S. 1986. Pseudomonas aeruginosa and cystic fibrosis: unusual bacterial adaptation and pathogenesis. Microbiological Sciences 3: 302–308.

    CAS  PubMed  Google Scholar 

  4. Seymor, C.A. 1984. Bringing molecular biology to the bedside: Cystic fibrosis. BioEssays 1: 38–40.

    Article  Google Scholar 

  5. Burns, M.W. and May, J.R. 1968. Bacterial precipitins in serum of patients with cystic fibrosis. Lancet i: 270–272.

    Article  Google Scholar 

  6. Govan, J.R.W. 1975. Mucoid strains of Pseudomonas aeruginosa: The influence of culture medium on the stability of mucus production. J. Med. Microbiol. 8: 513–522.

    Article  CAS  Google Scholar 

  7. Govan, J.R.W. and Fyfe, J.A.M. 1978. Mucoid Pseudomonas aeruginosa and cystic fibrosis: Resistance of the mucoid form to carbenicillin, flucloxacillin and tobramycin and the isolation of mucoid variants in vitro. J. Antimicrob. Chemother. 4: 233–240.

    Article  CAS  Google Scholar 

  8. Martin, D.R. 1973.Mucoid variation in Pseudomonas aeruginosa induced by the action of phage. J. Med. Microbiol. 6: 111–118.

    Article  CAS  Google Scholar 

  9. Deretic, V., Tomasek, P.H., Darzins, A. and Chakrabarty, A.M. 1986. Gene amplification induces mucoid phenotype in rec-2 Pseudomonas aeruginosa exposed to kanamycin. J. Bacteriol. 165: 510–516.

    Article  CAS  Google Scholar 

  10. Darzins, A. and Chakrabarty, A.M. 1984. Cloning of genes controlling alginate biosynthesis from a mucoid cystic fibrosis isolate of Pseudomonas aeruginosa. J. Bacteriol. 159: 9–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Goldberg, J.B. and Ohman, D.E. 1984. Cloning and expression of a gene involved in the production of alginate. J. Bacteriol. 158: 1115–1121.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Darzins, A., Wang, S.-K., Vanags, R.I. and Chakrabarty, A.M. 1985. Clustering of mutations affecting alginic acid biosynthesis in mucoid Pseudomonas aeruginosa. J. Bacteriol. 164: 516–524.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fyfe, J.A.M. and Govan, J.R.W. 1980. Alginate synthesis in mucoid Pseudomonas aeruginosa: A chromosomal locus involved in control. J. Gen. Microbiol. 119: 443–450.

    CAS  PubMed  Google Scholar 

  14. Holloway, B.W. and Morgan, A.F. 1986. Genome organization in Pseudomonas. Ann. Rev. Microbiol. 40: 79–105.

    Article  CAS  Google Scholar 

  15. Lessie, T.G. and Phibbs, P.V. 1984. Alternative pathways of carbohydrate utilization in pseudomonads. Ann. Rev. Microbiol. 38: 359–387.

    Article  CAS  Google Scholar 

  16. Darzins, A., Nixon, L.L., Vanags, R.I. and Chakrabarty, A.M. 1985. Cloning of Escherichia coli and Pseudomonas aeruginosa phosphomannose isomerase genes and their expression in alginate-negative mutants of Pseudomonas aeruginosa. J. Bacteriol. 161: 249–257.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gill, J.F., Deretic, V. and Chakrabarty, A.M. 1986. Overproduction and assay of P. aeruginosa phosphomannose isomerase. J. Bacteriol. 167: 611–615.

    Article  CAS  Google Scholar 

  18. Deretic, V., Gill, J.F. and Chakrabarty, A.M. 1987. Gene algD coding for GDPmannose dehydrogenase is transcriptionally activated in mucoid Pseudomonas aeruginosa. J. Bacteriol. 169: 351–358.

    Article  CAS  Google Scholar 

  19. Piggot, N.H., Sutherland, I.W. and Jarman, T.R. 1981. Enzymes involved in the biosynthesis of alginate by P. aeruginosa. Eur. J. Appl. Microbiol. Biotechnol. 13: 179–183.

    Article  Google Scholar 

  20. Pindar, D.F. and Bucke, C. 1975. The biosynthesis of alginic acid by Azotobacter vinelandii. Biochem. J. 152: 617–622.

    Article  CAS  Google Scholar 

  21. Sutherland, I.W. 1982. Biosynthesis of microbial exopolysaccharides. Microb. Physiol. 23: 74–150.

    Google Scholar 

  22. Darzins, A., Frantz, B., Vanags, R.I. and Chakrabarty, A.M. 1986. Nucleotide sequence analysis of the phosphomannose isomerase gene (pmi) of Pseudomonas aeruginosa and comparison with the corresponding Escherichia coli gene manA. Gene 42: 293–302.

    Article  CAS  Google Scholar 

  23. Deretic, V., Gill, J.F. and Chakrabarty, A.M. 1987. Pseudomonas infection in cystic fibrosis: A promoter with multiple direct repeats controlling bacterial mucoidy. Proc. Natl. Acad. Sci. USA. (Submitted).

  24. Ohman, D.E., Goldberg, J.B., Flynn, J.A.L. and Powell, S.K. 1985. Genetics of exopolysaccharide production by mucoid Pseudomonas aeruginosa. Antibiot. Chemother. 36: 13–22.

    Article  CAS  Google Scholar 

  25. Inouye, S., Nakazawa, A. and Nakazawa, T. 1984. Nucleotide sequence surrounding the transcription initiation site of xylABC operon on TOL plasmid of Pseudomonas putida. Proc. Natl. Acad. Sci. USA 81: 1688–1691.

    Article  CAS  Google Scholar 

  26. Inouye, S., Nakazawa, A. and Nakazawa, T. 1984. Nucleotide sequence of the promoter region of the xylDEGF operon on TOL plasmid of Pseudomonas putida. Gene 29: 323–330.

    Article  CAS  Google Scholar 

  27. Inouye, S., Nakazawa, A. and Nakazawa, T. 1985. Determination of the transcription initiation site and identification of the protein product of the regulatory gene xylR for xyl operons on the TOL plasmid. J. Bacteriol. 163: 863–869.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mermod, N., Lehrbach, P.R., Reineke, W. and Timmis, K.N. 1984. Transcription of the TOL plasmid toluate catabolic pathway operon of Pseudomonas putida is determined by a pair of co-ordinately and positively regulated overlapping promoters. EMBO J. 3: 2461–2466.

    Article  CAS  Google Scholar 

  29. Schell, M.A. 1986. Homology between nucleotide sequences of promoter regions of nah and sal operons of NAH7 plasmid of Pseudomonas putida. Proc. Natl. Acad. Sci. USA 83: 369–373.

    Article  CAS  Google Scholar 

  30. Pritchard, A.E. and Vasil, M.L. 1986. Nucleotide sequence and expression of a phosphate-regulated gene encoding a secreted hemolysin of Pseudomonas aeruginosa. J. Bacteriol. 167: 291–298.

    Article  CAS  Google Scholar 

  31. Grant, C.C.R. and Vasil, M.L. 1986. Analysis of transcription of the exotoxin A gene of Pseudomonas aeruginosa. J. Bacteriol. 168: 1451–1456.

    Article  Google Scholar 

  32. Loery, S. 1986. Effect of iron on accumulation of exotoxin A-specific mRNA in Pseudomonas aeruginosa. J. Bacteriol. 168: 1451–1456.

    Article  Google Scholar 

  33. Silhavy, T.J. and Beckwith, J.R. 1985. Uses of lac fusions for the study of biological problems. Microbiol. Rev. 49: 398–418.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Nakazawa, T., Inouye, S. and Nakazawa, A. 1985. Positive regulation and transcription initiation of xyl operons in TOL plasmid, p. 243–259. In: Plasmids in Bacteria. Helinski, D.R. et al. (eds.). Plenum Press, New York.

    Google Scholar 

  35. Jaurin, B. and Cohen, S.N. 1985. Streptomyces contain Escherichia coli-type A+T-rich promoters having novel structural features. Gene 39: 191–201.

    Article  CAS  Google Scholar 

  36. Ebright, R.H. 1986. Proposed amino acid-base pair contacts for 13 sequence-specific DNA binding proteins, p. 207–219. In: Protein Structure, Folding and Design, Oxender, D. (ed.). Alan Liss, New York.

    Google Scholar 

  37. Ebright, R.H. 1986. Evidence for a contact between glutamine-18 of lac represser and base pair 7 of lac operator. Proc. Natl. Acad. Sci. USA 83: 303–307.

    Article  CAS  Google Scholar 

  38. Bagdasarian, M.M., Amann, E., Lurz, R., Ruckert, B. and Bagdasarian, M. 1983. Activity of the hybrid trp-lac (tac) promoter of Escherichia coli in Pseudomonas putida. Gene 26: 273–282.

    Article  CAS  Google Scholar 

  39. Ditta, G., Scmidhauser, T., Yakobson, E., Lu, P., Liang, X.-W., Finlay, D.R., Guiney, D. and Helinski, D.R. 1985.Plasmids related to the broad host range vector, pRK290, useful for gene cloning and for monitoring gene expression. Plasmid 13: 149–153.

    Article  CAS  Google Scholar 

  40. Raibaud, O. and Schwartz, M. 1984. Positive control of transcription initiation in bacteria. Ann. Rev. Genet. 18: 173–206.

    Article  CAS  Google Scholar 

  41. Reznikoff, W.S., Siegele, D.A., Cowing, D.W. and Gross, C.A. 1985. The regulation of transcription initiation in bacteria. Ann. Rev. Genet. 19: 355–387.

    Article  CAS  Google Scholar 

  42. McClure, W.R. 1985. Mechanism and control of transcription initiation in prokaryotes. Ann. Rev. Biochem. 54: 171–204.

    Article  CAS  Google Scholar 

  43. Dixon, R. 1986. The xylABC promoter from the Pseudomonas putida TOL plasmid is activated by nitrogen regulatory genes in Escherichia coli. Mol. Gen. Genet. 203: 129–136.

    Article  CAS  Google Scholar 

  44. Gragerov, A.I., Chenchik, A.A., Aivasashvilli, V.A., Beabealashvilli, R.Sh. and Nikiforov, V.G. 1984. Escherichia coli and Pseudomonas putida RNA polymerases display identical contacts with promoters. Mol. Gen. Genet. 195: 511–515.

    Article  CAS  Google Scholar 

  45. Hirschman, J., Wang, P.-K., Sei, K., Keener, J. and Kustu, S. 1985. Products of nitrogen regulatory genes ntrA and ntrC of enteric bacteria activate gln A transcription in vitro: Evidence that the ntrA product is a σ factor. Proc. Natl. Acad. Sci. USA 82: 7525–7529.

    Article  CAS  Google Scholar 

  46. Merrick, M.J. and Gibbins, J.R. 1985. The nucleotide sequence of the nitrogen-regulation gene ntrA of Klebsiella pneumoniae and comparison with conserved features in bacterial RNA polymerase sigma factors. Nucl. Acids Res. 13: 7607–7620.

    Article  CAS  Google Scholar 

  47. Khan, H., Buck, M. and Dixon, R. 1986. Deletion loop mutagenesis of the nifL promoter from Klebsiella pneumoniae: Role of the –26 to –12 region in promoter function. Gene 45: 281–288.

    Article  CAS  Google Scholar 

  48. Buck, M. 1986. Deletion analysis of the Klebsiella pneumoniae nitrogenase promoter: Importance of spacing between conserved sequences around −12 and −24 for activation by the nifA and ntrC (glnG) products. J. Bacteriol. 166: 545–551.

    Article  CAS  Google Scholar 

  49. Buck, M., Miller, S., Drummond, M. and Dixon, R. 1986. Upstream activator sequences are present in the promoters of nitrogen fixation genes. Nature 320: 374–378.

    Article  CAS  Google Scholar 

  50. Inouye, S., Nakazawa, A. and Nakazawa, T. 1986. Nucleotide sequence of the regulatory gene xylS on the Pseudomonas putida TOL plasmid and identification of the protein product. Gene 44: 235–242.

    Article  CAS  Google Scholar 

  51. Johnson, K., Parker, M.L. and Lory, S. 1986. Nucleotide sequence and transcription initiation site of two Pseudomonas aeruginosa pilin genes. J. Biol. Chem. 261: 15703–15708.

    CAS  PubMed  Google Scholar 

  52. Minton, N.P. and Clark, L.E. 1985. Identification of the promoter of the Pseudomonas gene coding for carboxypeptidase G2. J. Mol. Appl. Genet. 2: 26–35.

    Google Scholar 

  53. Inouye, S., Asa, Y., Nakazawa, A. and Nakazawa, T. 1986. Nucleotide sequence of a DNA segment promoting transcription in Pseudomonas putida. J. Bacteriol. 166: 739–745.

    Article  CAS  Google Scholar 

  54. Smith, C.A., Shingler, V. and Thomas, C.M. 1984. The trfA and trfB promoter regions of broad host range plasmid RK2 share common potential regulatory sequences. Nucl. Acids Res. 12: 3619–3630.

    Article  CAS  Google Scholar 

  55. Amann, E., Brosius, J. and Ptashne, M. 1983. Vectors bearing a hybrid trp-lac promoter useful for regulated expression of cloned genes in Escherichia coli. Gene 15: 167–178.

    Article  Google Scholar 

  56. Dickson, R.C., Abelson, J., Barnes, W.M., Reznikoff, W.S. 1975. Genetic regulation: The lac control region. Science 182: 27–35.

    Article  Google Scholar 

  57. Calos, M. 1978. The promoter of the lactose represser gene. Nature 274: 762–765.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deretic, V., Gill, J. & Chakrabarty, A. Alginate Biosynthesis: A Model System for Gene Regulation and Function in Pseudomonas. Nat Biotechnol 5, 469–477 (1987). https://doi.org/10.1038/nbt0587-469

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0587-469

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing