Plasmid–Transformed ura3 fur1 Double-Mutants of S. cerevisiae: An Autoselection System Applicable to the Production of Foreign Proteins

Article metrics

Abstract

Simple auxotrophic mutants of S. cerevisiae transformed to prototrophy via plasmid DNA must be grown in media in which cured cells are counter–selected. This restricts the choice of the medium to those whose composition is compatible with the selection. These media are generally not comparable with the cheap, complex media used by industry for the production of yeast cells. We report a new selection system that enables the growth of plasmid–transformed yeast cells for the production of foreign proteins in complex media. The recipient strains are double–mutants (ura3 fur1) whose viability is strictly linked to the presence of a plasmid encoding a functional orotidine–5′–phosphate decarboxylase (OMP decase). We show that these strains can produce high levels of a plasmid–encoded foreign protein (namely human α1–antitrypsin) in various complex media, including those used by industry, for many generations without any detectable loss of the plasmid–linked phenotype.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Valenzuela, P., Medina, A., Rutter, W.J., Ammerer, G., and Hall, B.D. 1982. Synthesis and assembly of hepatitis B virus surface antigen particles in yeast. Nature 298:347–350.

  2. 2

    Miyanohara, A., Toh-E, A., Nozaki, C., Hamada, F., Ohtomo, N., and Matsubara, K. 1983. Expression of hepatitis B surface antigen gene in yeast. Proc. Natl. Acad. Sci, USA 80:1–5.

  3. 3

    Hitzeman, R.A., Chen, C.Y., Hagie, F.E., Patzer, E.J., Liu, C.-C., Estell, D.A., Miller, J.V., Yaffe, A., Kleid, D.G., Levinson, A.D., and Oppermann, H. 1983. Expression of Hepatitis B virus surface antigen in yeast. Nucleic Acids Res. 11:2745–2763.

  4. 4

    McAleer, W.J., Buynak, E.B., Maigetter, R.Z., Wampler, D.E., Miller, W.J., and Hilleman, M.R. 1984. Human Hepatitis B vaccine from recombinant yeast. Nature 307:178–180.

  5. 5

    Tuite, M.F., Dobson, M.J., Roberts, N.A., King, R.M., Burke, D.C., Kingsman, S.M., and Kingsman, A.J. 1982. Regulated high efficiency expression of human interferon-alpha in Saccharomyces cerevisiae. EMBO Journal 1:603–608.

  6. 6

    Mellor, J., Dobson, M.J., Roberts, N.A., Tuite, M.F., Emtage, J.S., White, S., Lowe, P.A., Patel, T., Kingsman, A.J., and Kingsman, S.M. 1983. Efficient synthesis of enzymatically active calf chymosin in Saccharomyces cerevisiae. Gene 24:1–14.

  7. 7

    Innis, M.A., Holland, M.J., McCake, P.C., Cole, G.E., Withman, V.P., Tal, R., Watt, W.K., Gelfand, D.H., Holland, J.P., and Meade, J.H. 1985. Expression, glycosylation and secretion of an Aspergillus glucoamylase by Saccharomyces cerevisiae. Science 228:21–26.

  8. 8

    Bitter, G.A., Chen, K.K., Banks, A.R., and Lai, P.H. 1984. Secretion of foreign proteins from Saccharomyces cerevisiae directed by α-factor gene fusions. Proc. Natl. Acad. Sci. USA 81:5330–5334.

  9. 9

    Brake, A.J., Merryweather, J.P., Coit, D.G., Heberlein, U.A., Masiarz, F.R., Mullenbach, G.T., Urdea, M.S., Valenzuela, P., and Barr, P.J. 1984. α-Factor-directed synthesis and secretion of mature foreign proteins in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 81:4642–4646.

  10. 10

    Burrow, S.S. 1970. Baker's yeast, p. 349–420. In: The Yeast Vol. 3. Rose, H., and Harrison, J. S. (eds.) Academic Press, London, U.K.

  11. 11

    Oura, E., Suomalainen, H., and Viskari, R. 1982. Breadmaking, p. 87–146. In: Fermented Foods. Rose, A. H. (ed.) Academic Press, London, U.K.

  12. 12

    Gerbaud, C., Fournier, P., Blanc, H., Aigle, M., Heslot, H., and Guerineau, M. 1979. High frequency of yeast transformation by plasmids carrying part or entire 2 μ yeast plasmid. Gene 5:233–253.

  13. 13

    Webster, T.D. and Dickson, R.C. 1983. Direct selection of S. cerevisiae resistant to the antibiotic G418 following transformation with a DNA vector carrying the kanamycin resistance gene of Tn903. Gene 26:243–252.

  14. 14

    Bussey, H., and Meaden P. . 1985. Selection and stability of yeast transformants expressing cDNA of an M1 killer toxin immunity gene. Curr. Genet. 9:285–291.

  15. 15

    Zhu, J., Contreras, R., Gheisen, D., Ernst, J., and Fiers, N. 1985. A system for dominant transformation and plasmid amplification in Saccharomyces cerevisiae. Bio/Technology 3:451–455.

  16. 16

    Lacroute, F. 1968. Regulation of pyrimidine biosynthesis in Saccharomyces cerevisiae. J. Bacteriol. 95:824–832.

  17. 17

    Jund, R. and Lacroute, F. 1970. Genetic and physiological aspects of 5-fluoropyrimidines in Saccharomyces cerevisiae. J. Bacteriol. 102:607–617.

  18. 18

    Kikuchi, Y. 1983. Yeast plasmid requires a cis-acting locus and two plasmid proteins for its stable maintenance. Cell 35:484–4983.

  19. 19

    Chevallier, M.R. and Aigle, M. 1979. Qualitative detection of penicillinase produced by yeast strains carrying chimeric yeast-coli plasmids. FEBS Lett. 108:179–180.

  20. 20

    Rosenberg, S., Barr, P.J., Najarian, R.C., and Hallewell, R.A. 1984. Synthesis in yeast of a functional oxidation-resistant mutant of human α1-antitrypsin. Nature 312:77–80.

  21. 21

    Cabezon, T., De Wilde, M., Herion, P., Loriau, R., and Bollen, A. 1984. Expression of human α1-antitrypsin cDNA in the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 81:6594–6598.

  22. 22

    Courtney, M., Buchwalder, A., Tessier, L.-H., Jaye, M., Benavente, A., Balland, A., Kohli, V., Lathe, R., Tolstoshev, P., and Lecocq, J.P. 1984. High-level production of biologically active human α1-antitrypsin in Escherichia coli. Proc. Natl. Acad. Sci. USA 81:669–673.

  23. 23

    Rothstein, R.J. 1983. One-step gene disruption in yeast. Methods Enzymol. 101:202.

  24. 24

    Winston, F., Chumley, F., and Fink, G.R. 1983. Eviction and transplacement of mutant genes in yeast. Methods Enzymol. 101:219.

  25. 25

    Jensen, K.F., Larsen, J.N., Schack, L., and Sivertsen, A. 1984. Studies on the structure and expression of Escherichia coli pyrC., pyrI and pyrF using the cloned genes. Eur. J. Biochem. 140:343–352.

  26. 26

    Donovan, W.P. and Kushner, S.R. 1983. Cloning and physical analysis of the pyrF gene (coding for orotidine-5′-phosphate decarboxylase) from Escherichia coli K-12. Gene 25:39–48.

  27. 27

    Beggs, J.D. 1981. Gene cloning in yeast, p. 175–203. In: Genetic Engineering, Vol. 2. Williamson, R. (ed.) Academic Press, London, U. K.

  28. 28

    Broach, J.R. 1981. The yeast plasmid 2 μ circle. In: The Molecular Biology of the Yeast Saccharomyces—Life Cycle and Inheritance. Strathern, J. N., Jones, E. W., and Broach, J. R. (eds.). Cold Spring Harbor Laboratory Press, New York.

  29. 29

    Bolivar, F., Rodriguez, R.L., Greene, P.J., Betlach, M.C., Heyneker, H.L., Boyer, H.W., Crosa, J.H., and Falkow, S. 1977. Construction and characterization of new cloning vehicles part 2: a multi purpose cloning system. Gene 2:95–114.

  30. 30

    Bach, M.L., Lacroute, F., and Botstein, D. 1979. Evidence for transcriptional regulation of orotidine 5′-phosphate in yeast by hybridization of mRNA to the yeast structural gene cloned in E. coli. Proc. Natl. Acad. Sci. USA 76:386–390.

  31. 31

    Hitzeman, R.A., Hagie, F.E., Hayflick, J.S., Chen, C.Y., Seeburg, P.H., and Derynck, R. 1982. The primary structure of the Saccharomyces cerevisiae gene for 3-phosphoglycerate kinase. Nucleic Acids Res. 10:7791–7808.

  32. 32

    Clowes, R.C. and Hayes, W. 1968. Experiments in Microbial Genetics, p. 187. Wiley, New York.

  33. 33

    Mortimer, R.K. and Hawthorne, D.C. 1966. Genetic Mapping in Saccharomyces cerevisiae. Genetics 53:165–173.

  34. 34

    Clewell, D.B. 1972. Nature of ColE1 replication in E. coli in the presence of chloramphenicol. J. Bacteriol. 110:667–672.

  35. 35

    Maniatis, T., Fritsh, E.F., and Sambrook, J. 1982. Molecular cloning. Cold Spring Harbor Laboratory, New York.

  36. 36

    Ito, H., Fukuda, Y., Murata, K., and Kimura, A. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.

  37. 37

    Cohen, S.N., Chiang, A.C.Y., and Hsu, L. 1972. Non-chromosomal antibiotic resistance in bacteria: genetic transformation of E. coli by R factor DNA. Proc. Natl. Acad. Sci. USA 69:2110–2114.

  38. 38

    Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Analyt. Biochem. 72:248–254.

  39. 39

    Veira, J. and Messing, J. 1982. The pUC plasmid, an M13 mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primer. Gene 19:259–268.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Loison, G., Nguyen-Juilleret, M., Alouani, S. et al. Plasmid–Transformed ura3 fur1 Double-Mutants of S. cerevisiae: An Autoselection System Applicable to the Production of Foreign Proteins. Nat Biotechnol 4, 433–437 (1986) doi:10.1038/nbt0586-433

Download citation

Further reading