Novel Bioreactor Systems and Their Applications


New sophisticated bioreactor designs with unique performance characteristics will play a vital role in the economic manufacture of useful biotechnological products from natural and genetically modified cell systems of microbial, mammalian and plant origin. In this paper we summarize the basic bioreactor design criteria, and review various novel bioreactor types and their applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Atkinson, B., and Mavituna, F. 1983. Biochemical Engineering and Biotechnology Handbook, p. 581–669. The Nature Press, N.Y., U.S.A.

    Google Scholar 

  2. 2

    Bucholz, R., Alder, I., and Schugerl, K. 1979. Investigation of the structure of two-phase flow model-media in bubble column bioreactors, I. Europ. J. Microbiol. Biotechnol. 7: 135–145.

    Google Scholar 

  3. 3

    Blakebrough, N., Shepherd, P.G., and Nimmens, J. 1967. Equipment for hydrocarbon fermentations, Biotech. Bioeng. 9: 77

    CAS  Google Scholar 

  4. 4

    Margaritis, A. and Zajic, J.E. 1978. Mixing, mass transfer, and scale-up of polysaccharide fermentations. Biotech. Bioeng. 20: 939–1001.

    CAS  Google Scholar 

  5. 5

    Feder, J. and Tolbert, W.R. 1983. The large-scale cultivation of mammalian cells. Amer. Sci. 248: 36–43.

    CAS  Google Scholar 

  6. 6

    Margaritis, A. and Wallace, J.B. 1982. The use of immobilized cells of Zymomonas mobilis in a novel fluidized bioreactor to produce ethanol. Biotech. Bioeng. Symp. No 12: 147–159.

  7. 7

    de Cabrera, S., de Arriola, M.C., Morales, E., de Micheo, F., and Rolz, C. 1982. EX-FERM ethanol production using chipped sugar-cane in packed bed fermentors. Europ. J. Microbiol. Biotechnol. 14: 21–28.

    CAS  Google Scholar 

  8. 8

    Atkinson, B. and Davies, I.J. 1972. The completely mixed microbial film fermenter-a method of overcoming wash-out in continuous fermentation. Trans. Inst. Chem. Eng. 50: 208.

    CAS  Google Scholar 

  9. 9

    Margaritis, A. and Bajpai, P. 1983. Novel immobilized cell systems for the production of ethanol from Jerusalem artichoke. Annals N.Y. Acad. Sciences. 413: 479–482.

    CAS  Google Scholar 

  10. 10

    Margaritis, A. and Merchant, F. 1984. Advances in ethanol production using immobilized cell systems. CRC Crit. Rev. Biotechnol.(in press).

  11. 11

    Butterworth, T.A., Wang, D.I.C., and Sinskey, A.J. 1970. Application of ultrafiltration for enzyme retention during continuous enzymatic reaction. Biotech. Bioeng. 12: 615.

    CAS  Google Scholar 

  12. 12

    Pitcher, W.H. 1978. Design and operation of immobilized enzyme reactors. Adv. Biochem. Eng. 10: 75–129.

    Google Scholar 

  13. 13

    Brodelius, P. 1978. Industrial applications of immobilized biocata-lysts. Adv. in Biochem. Eng. 10: 1–23.

    Google Scholar 

  14. 14

    Brodelius, P. 1983. Production of biochemicals with immobilized plant cells. Possibilities and problems. Annals N.Y. Acad. Sciences. 413: 383–393.

    CAS  Google Scholar 

  15. 15

    Hoare, M., Dunnill, P., and Bell, D.J. 1983. Reactor design for protein precipitation and its effect on centrifugal separation. Annals N.Y. Acad. Sciences. 413: 254–269.

    CAS  Google Scholar 

  16. 16

    Hirtenstein, M. and Clark, J. 1983. Microcarrier-bound mammalian cells, p. 57–58. In Immobilized Cells and Organelles. Vol. I. B. Mattiasson (ed.), CRC Press, Boca Raton, Fla., U.S.A.

    Google Scholar 

  17. 17

    Kleid, D.G. 1983. Using genetically engineered bacteria for vaccine production. Annals N.Y. Acad. Sciences. 413: 23–30.

    CAS  Google Scholar 

  18. 18

    Konrad, M. 1983. Applications of genetic engineering to the pharmaceutical industry. Annals N.Y. Acad. Sciences. 413: 12–22.

    CAS  Google Scholar 

  19. 19

    Bailey, J.E., Hjortso, M., Lee, S.B., and Srienc, F. 1983. Kinetics of product formation and plasmid segregation in recombinant microbial populations. Annals N.Y. Acad. Sciences. 413: 71–87.

    CAS  Google Scholar 

  20. 20

    Buchholz, R., Luttmann, R., Zakrzewski, W., and Schugerl, K. 1981. Substrate effects in tower loop reactors. Europ. J. Microbiol. Biotechnol. 12: 63–68.

    CAS  Google Scholar 

  21. 21

    Jones, R.P. and Greenfield, P.F. 1982. Effect of carbon dioxide on yeast growth and fermentation. Enzyme Microb. Tech. 4: 210–223.

    CAS  Google Scholar 

  22. 22

    Mattiasson, B., Maudenius, C.F., Axelsson, J.P., Danielsson, B., and Hagander, P. 1983. Computer control of fermentations with biosensors. Annals N.Y. Acad. Sciences. 413: 193–196.

    CAS  Google Scholar 

  23. 23

    Brodelius, P. 1983. Immobilized plant cells, p.27–55. In Immobilized Cells and Organelles, Vol. I. Mattiasson, B. (ed.), CRC Press, Boca Raton, Fla., U.S.A.

    Google Scholar 

  24. 24

    Calabresi, P., McCarthy, K.L., Dexter, D.L., Cummins, F.J., and Rotman, B. 1981. Monoclonal antibody production in artificial capillary cultures. Proc. Amer. Assoc. Cancer Res. 22: 362.

    Google Scholar 

  25. 25

    Crespi, C.L., Imamura, T., Leong, P., Fleischaker, R.J., Brunen-graber, H., Thilly, W.G., and Giard, D.J. 1981. Microcarrier culture: applications in biologicals production and cell biology. Biotech. Bioeng. 23: 2673–2689.

    CAS  Google Scholar 

  26. 26

    Cysewski, G.R. and Wilke, C.R. 1977. Rapid ethanol fermentations using vacuum and cell recycle. Biotech. Bioeng. 19: 1125–1143.

    CAS  Google Scholar 

  27. 27

    Glacken, M.W., Fleischaker, R.J., and Sinskey, A.J. 1983. Large scale production of mammalian cells and their products: engineering principles and barriers to scale-up. Annals N.Y. Acad. Sciences. 413: 355–372.

    CAS  Google Scholar 

  28. 28

    Margaritis, A., Rieger, M., and Tucker, J. 1984. Fermentation and recovery of the immunosuppressant cyclosporin A from Trichoderma polysporum. Paper presented at the Engineering Foundation Conference, Sea Island, Georgia, U.S.A., Jan.29–Feb.3.

  29. 29

    Margaritis, A. and Wilke, C.R. 1978. The rotorfermentor. II. application to ethanol fermentation. Biotech. Bioeng. 20: 727–753.

    CAS  Google Scholar 

  30. 30

    Hines, D.A. 1978. The large scale pressure cycle fermentor configuration. Biotechnology, p. 55. Verlag Chemie, Weinheim.

  31. 31

    Zanetti, R. 1984. Breathing new life into single-cell protein. Chemical Engineering 91: 18–21.

    Google Scholar 

  32. 32

    Atkinson, B., Black, G.M., and Pinches, A.A. 1981. The characteristics of solid supports and biomass support particles when used in fluidized beds p. 75–106. In: Biological Fluidized Bed Treatment of Water and Wastewater. P.F. Cooper and B. Atkinson, (ed.), Ellis Horwood, Chichester, England.

    Google Scholar 

  33. 33

    Van Wezel, A.L. 1967. Growth of cell strains and primary cells on Microcarriers in homogeneous culture. Nature 216: 64.

    CAS  PubMed  Google Scholar 

  34. 34

    Spier, R.E. 1980. Recent developments in large scale cultivation of animal cells in monolayers. Adv. Biochem. Eng. 14: 119–162.

    CAS  Google Scholar 

  35. 35

    Hopkinson, J. 1983. Hollow fibre cell culture: Applications in industry, p. 89–99. In Immobilized Cells and Organelles. Vol. I., B. Mattiasson, (ed.), CRC Press, Boca Raton, Fla., U.S.A.

    Google Scholar 

  36. 36

    Prenosil, J.E. and Pedersen, H. 1983. Immobilized plant cell reactors. Enzyme Microb. Technol. 5: 323–332.

    CAS  Google Scholar 

  37. 37

    Fohring, B., Tjia, S.T., and Zenke, W.M. 1980. Propagation of mammalian cells and virus in a self-regulating fermentor. Proc. Soc. Exp. Biol. Med. 164: 222.

    CAS  PubMed  Google Scholar 

  38. 38

    Shuler, M.L., Sahai, O.P., and Hallsby, G.A. 1983. Entrapped plant cell tissue cultures. Annals N.Y. Acad. Sciences. 413: 373–382.

    Google Scholar 

  39. 39

    Vick Roy, T.B., Blanch, H.W., and Wilke, C.R. 1983. Microbial hollow fibre bioreactors. paper submitted for publication.

  40. 40

    Webster, R. 1976. Concentration of swine influenza virus. Amicon Publication No. 463.

  41. 41

    Margaritis, A. and Wilke, C.R. 1978. The rotortermentor. I. description of the apparatus, power, requirements, and mass transfer characteristics. Biotech. Bioeng. 20: 709–726.

    CAS  Google Scholar 

  42. 42

    Leduy, A. and Therien, N. 1979. Cultivation of Spirulina maxima in an annular photochemical reactor. Can. J. Chem. Eng. 57: 489–495.

    CAS  Google Scholar 

  43. 43

    Kurz, W.G.W. and Constabel, F. 1977. Plant cell culture, a potential source of pharmaceuticals. In Adv. Appl. Microbiol. Vol. 25, D. Perlman (ed.), Academic Press, N.Y.

    Google Scholar 

  44. 44

    Mandels, M. 1972. The culture of plant cells. Adv. Biochem. Eng. 2: 201–215.

    CAS  Google Scholar 

  45. 45

    Staba, E.J. 1980. Plant Tissue Culture as a Source of Biochemicals. CRC Press, Boca Raton, Fla., U.S.A.

    Google Scholar 

  46. 46

    Goldstein, W.E. 1983. Large scale processing of plant cell culture. Annals N.Y. Acad. Sciences. 413: 394–407.

    Google Scholar 

  47. 47

    Barker, T.W. and Worgan, J.T. 1981. The application of air-lift fermenlers to the cultivation of filamentous fungi. Europ. J. Microbiol. Biotechnol. 13: 77–83.

    Google Scholar 

  48. 48

    Buchholz, R., Luttmann, R., Zakrzewski, W., and Schugerl, K. 1981. Cultivation of Hansenula polymorpha in tower loop reactors. Europ. J. Microbiol. Biotechnol. 11: 89–96.

    CAS  Google Scholar 

  49. 49

    Margaritis, A., Kennedy, K., and Zajic, J.E. 1980. Application of an air-lift fermentor in the production of biosurfactants. Dev. Ind. Micro. 21: 285–294.

    CAS  Google Scholar 

  50. 50

    Margaritis, A. and Sheppard, J.D. 1981. Mixing time and oxygen transfer characteristics of a double draft tube air-lift fermentor. Biotech. Bioeng. 23: 2117–2135.

    Google Scholar 

  51. 51

    Mercer, D.G. 1981. Flow characteristics of a pilot-scale airlift fermentor. Biotech. Bioeng. 23: 2421–2431.

    Google Scholar 

  52. 52

    Merchuk, J.C., Stein, Y., and Mateles, R.I. 1980. Distributed parameter model of an airlift fermentor. Biotech. Bioeng. 22: 1189–1211.

    Google Scholar 

  53. 53

    Moresi, M. 1981. Optimal design of airlift fermenters. Biotech. Bioeng. 23: 2537–2560.

    CAS  Google Scholar 

  54. 54

    Onken, U. and Weiland, P. 1980. Hydrodynamics and mass transfer in an airlift loop fermentor. Europ. J. Microbiol. Biotechnol. 10: 31–40.

    Google Scholar 

  55. 55

    Orazem, M.E. and Erickson, L.E. 1979. Oxygen-transfer rates and efficiencies in one- and two-stage airlift towers. Biotech. Bioeng. 21: 69–88.

    CAS  Google Scholar 

  56. 56

    Zakrzewski, W., Lippert, J., Lubbert, A., and Schugerl, K. 1981. Investigation of the structure of two-phase flows. Model media in bubble-column bioreactors. Europ. J. Microbiol. Biotechnol. 12: 69–75

    CAS  Google Scholar 

  57. 57

    Atkinson, B. and Lewis, P.J.S. 1980. The development of immobilized fungal particles and their use in fluidized fermenters. In Fungal Biotechnology, J.E. Smith, (ed.), Academic Press, London.

    Google Scholar 

  58. 58

    Cho, G.H., Choi, C.Y., Choi, Y.D., and Moon, M.H. 1981. Continuous ethanol production by immobilized yeast in a fluidized reactor. Biotech. Letters 3: 667–671.

    CAS  Google Scholar 

  59. 59

    Margaritis, A., te Bokkel, D., and Kashab, M.E. 1983. Pilot plant production of ethanol using immobilized yeast cells in a novel fluidized bioreactor system. Paper presented at the 18th ACS meeting, Washington, D.C., Aug. 28-Sept. 2.

  60. 60

    Nagashima, M., Azuma, M., and Noguchi, S. 1983. Continuous alcohol production with immobilized microbial cells. Annals N.Y. Acad. Sciences. 413: 457–468.

    Google Scholar 

  61. 61

    Scott, C.D. and Hancher, C.W. 1976. Use of a tapered fluidized bed as a continuous bioreactor. Biotech. Bioeng. 18: 1393–1403.

    CAS  Google Scholar 

  62. 62

    Scott, C.D. 1983. Fluidized-bed bioreactors using a floculating strain of Zymomonas mobilisfor ethanol production. Annals N.Y. Acad. Sciences. 413: 448–456.

    CAS  Google Scholar 

  63. 63

    Levine, D.W., Wang, D.I.C., and Thilly, W.G. 1979. Optimization of growth surface parameters in microcarrier cell culture. Biotech. Bioeng. 21: 821–845.

    Google Scholar 

  64. 64

    Microcarrier cell culture: principles and methods. 1981. Pharmacia Fine Chemicals, Technical Booklet Series, Uppsala, Sweden.

  65. 65

    Santero, G.G. 1972. The rotary column method for growth of large-scale quantities of cell monolayers. Biotech. Bioeng. 14: 753–775.

    CAS  Google Scholar 

  66. 66

    Weiss, R.E. and Schleicher, J.B. 1968. A multisurface tissue propagator for the mass-scale growth of cell monolayers. Biotech. Bioeng. 10: 301–615.

    Google Scholar 

  67. 67

    Giard, D.J., Loeb, D.H., Thilly, W.G., Wang, D.I.C., and Levine, D.W. 1979. Human interferon production with diploid fibroblast cells grown on microcarriers. Biotech. Bioeng. 21: 433–442.

    CAS  Google Scholar 

  68. 68

    Ku, K., Kuo, M.J., Delente, J., Wildi, B.S., and Feder, J. 1981. Development of a hollow-fibre system for large-scale culture of mammalian cells. Biotech. Bioeng. 23: 79–95.

    Google Scholar 

  69. 69

    Inoles, D.S., Smith, W.J., Taylor, D.P., Cohen, S.N., Micheals, A.S., and Robertson, C.R. 1983. Hollow-fiber membrane bioreac-tors using immobilized E. coli for protein synthesis. Biotech. Bioeng. 25: 2653–2681.

    Google Scholar 

  70. 70

    Jose, W., Pederson, H., and Chin, C.K. 1983. Immobilization of plant cells in a hollow-fibre reactor. Annals N.Y. Acad. Sciences. 413: 409–412.

    Google Scholar 

  71. 71

    Tamura, T. and Takano, T. 1978. A new rapid procedure for the concentration of C-type viruses from large quantities of culture media. J. Gen. Virol. 41: 135.

    Google Scholar 

  72. 72

    Trudell, M. and Payment, P. 1980. Concentration and purification of rubella virus hemoglutinin by hollow fiber ultrafiltration. Can. J. Microbiol. 26: 1334.

    Google Scholar 

  73. 73

    Tutunjian, R.S. 1983. Ultrafiltration processes in biotechnology. Annals N.Y. Acad. Sciences. 413: 238–253.

    CAS  Google Scholar 

  74. 74

    Van Wezel, A.L. 1975. Concentration of biological products in vaccine production by hollow filter ultrafilters. Amicon Dialog. 7: 1.

    Google Scholar 

  75. 75

    Webster, I.A., Shuler, M.L., and Rony, P.R. 1979. Whole-cell hollow-fibre reactor: effectiveness factors. Biotech. Bioeng. 21: 1725–1748

    CAS  Google Scholar 

  76. 76

    Weiss, S.A. 1980. Concentration of baboon endogenous virus in large-scale production by use of hollow fiber ultrafiltration technology. Biotech. Bioeng. 22: 19.

    CAS  Google Scholar 

  77. 77

    Margaritis, A. and Wilke, C.R. 1972. Engineering analysis of the rotorfermentor. Dev. Ind. Micro. 13: 159–175.

    Google Scholar 

  78. 78

    Haraldson, A. and Rosen, C. 1982. Studies on continuous ethanol fermentation of sugar cane molasses. I. a system for continuous fermentation. Europ. J. Microbiol. Biotechnol. 14: 216–219.

    CAS  Google Scholar 

  79. 79

    Haraldson, A. and Rosen, C. 1982. Studies on continuous ethanol fermentation of sugar cane molasses. II. Continuous alcohol fermentation and product removal in a laboratory scale plant. Europ. J. Microbiol. Biotechnol. 14: 220–224.

    CAS  Google Scholar 

  80. 80

    Marcipar, A., Henno, P., Leutwojt, E., Roseto, A., and Brown, G. 1983. Ceramic supported hybridomas for continuous production of monoclonal antibodies. Annals N.Y. Acad. Sciences. 413: 416–420.

    CAS  Google Scholar 

  81. 81

    Margaritis, A., Bajpai, P.K., and Wallace, J.B. 1981. High ethanol productivities using small Ca-Alginate beads of immobilized cells of ZymomoruK mobilis. Biotech. Letters. 3: 613–618.

    CAS  Google Scholar 

  82. 82

    Rowe, G. and Margaritis, A. 1981. Paper presented at the 74th AIChE annual meeting, New Orleans, Nov 8–12.

  83. 83

    Veliky, I.A. and Jones, A. 1982. Bioconversion of gitoxigenin by immobilized plant cells in a column bioreactor. Biotech. Lett. 3: 551.

    Google Scholar 

  84. 84

    Fontanges, R., Deschaux, P., and Beaudry, Y. 1971. Apparatus for continuous, large-volume suspended cell cultivation. Biotech. Bioeng. 13: 457–470.

    CAS  Google Scholar 

  85. 85

    Konig, B., Seewald, C., and Schugerl, K. 1981. Process engineering investigations of penicillin production. Europ. J. Microbiol. Biotechnol. 12: 205–211.

    Google Scholar 

  86. 86

    Lee, J.H., Woodard, J.C., Pagan, R.J., and Rogers, P.L. 1981. Vacuum fermentation for ethanol production using strains of Zymomonas mobilis. Biotech. Letters. 3: 177–182.

    CAS  Google Scholar 

  87. 87

    Lynn, J.D. and Acton, R.T. 1975. Design of a large scale mammalian cell suspension culture facility. Biotech. Bioeng. 17: 659–673.

    Google Scholar 

  88. 88

    MacLean, G.T., Erickson, L.E., Hsu, K.H., and Fan, L.T. 1977. Oxygen transfer and axial dispersion in an aeration tower containing static mixers. Biotech. Bioeng. 19: 493–505.

    CAS  Google Scholar 

  89. 89

    Maiorella, B., Blanch, H.W., and Wilke, C.R. 1983. By-product inhibition effects on ethanolic fermentation by Saccharomyces cerevisiae. Biotech. Bioeng. 25: 103–121.

    CAS  Google Scholar 

  90. 90

    Moore, G.E., Hasenpusch, P., Gerner, R.E., and Burns, A.A. 1968. A pilot plant for mammalian cell culture. Biotech. Bioeng. 10: 625–640.

    Google Scholar 

  91. 91

    Paca, J. and Gregr, V. 1976. Design and performance characteristics of a continuous multistage tower fermentor. Biotech. Bioeng. 18: 1075–1090.

    Google Scholar 

  92. 92

    Pestka, S. 1981. Interferons, p. 75–83, In Meth. in Enzymology, V. 18. S. Pestka, (ed.), Academic Press, N.Y.

    Google Scholar 

  93. 93

    Radlett, P.J., Telling, R.C., Whitside, J.P., and Maskell, M.A. 1972. The supply of oxygen to submerged cultures of BHK 21 cells. Biotech. Bioeng. 14: 437–445.

    CAS  Google Scholar 

  94. 94

    Scattergood, E.M., Achlabach, A.J., Mcaleer, W.J., and Hilleman, M.R. 1983. Scale-up of chick cell growth on microcarriers in fermenters for vaccine production. Annals N.Y. Acad. Sciences. 413: 332–339.

    CAS  Google Scholar 

  95. 95

    Telling, R.C.,and Elsworth, R. 1965. Submerged culture of hamster kidney cells in a stainless steel vessel. Biotech. Eng. 7: 417–434.

    Google Scholar 

  96. 96

    Tolbert, W.R. and Feder, J. 1983. Large-scale cell culture technology. Ann. Rep. Perm. Proc. 6: 35–74.

    Google Scholar 

  97. 97

    Tolbert, W.R., Feder, J., and Kimes, R.C. 1981. Large-scale rotating filter perfusion system for high-density growth of mammalian suspension cultures. In Vitro 17: 885–890.

    CAS  PubMed  Google Scholar 

  98. 98

    Tolbert, W.R., Mitt, M.M., and Feder, J. 1979. Cell aggregate suspension culture for large-scale production of biomolecules. In Vitro 16: 491–501.

    Google Scholar 

  99. 99

    Tolbert, W.R., Schoenfeld, R.A., Lewis, C., and Feder, J. 1982. Large-scale mammalian cell culture: design and use of an economical batch suspension system. Biotech. Bioeng. 24: 1671–1679.

    CAS  Google Scholar 

  100. 100

    Ulrich, K. and Moore, G.E. 1965. A vibrating mixer for agitation of suspension cultures of mammalian cells. Biotech. Bioeng. 7: 507–515.

    CAS  Google Scholar 

  101. 101

    White, R.J. and Klein, F. 1980. Large-scale production of human lymphoblastoid interferon. Cancer Treatment Reviews 7: 245–252.

    CAS  PubMed  Google Scholar 

  102. 102

    Wilson, G. 1980. Continuous culture of plant cells using the chemo-stat principle. Adv. Biochem. Eng. 16: 1–25.

    Google Scholar 

  103. 103

    Zwerner, R.K., Cox, R.M., Lynn, J.D., and Acton, R.T. 1981. Five-year perspective of the large-scale growth of mammalian cells in suspension culture. Biotech. Bioeng. 23: 2717–2735.

    Google Scholar 

  104. 104

    Zwerner, R.K., Runyan, C., Cox, R.M., Lynn, D., and Acton, D. 1975. An evaluation of suspension culture systems for the growth of murine lymphoblastoid lines expressing TL and Thy-1 alloantigens. Biotech. Bioeng. 17: 629–657.

    Google Scholar 

  105. 105

    Voigt, J. and Schugerl, K. 1981. Comparison of single- and three-stage tower loop reactors. Europ. J. Microbiol. Biotechnol. 11: 97–105.

    CAS  Google Scholar 

  106. 106

    Ziegler, H., Meister, D., Dunn, I.J., Blanch, H.W., and Russell, T.W.F. 1977. The tubular loop fermentor: oxygen transfer, growth kinetics, and design. Biotech. Bioeng. 14: 507–525.

    Google Scholar 

  107. 107

    Faust, U. and Sittig, W. 1980. Methanol as carbon source for biomass production in a loop reactor. Adv. Biochem. Eng. 17: 63–99.

    CAS  Google Scholar 

  108. 108

    Lin, C.H., Fang, B.S., Wu, C.S., Fang, H.Y., Kuo, T.F., and Hu, C.Y. 1976. Oxygen transfer and mixing in a tower cycling fermentor. Biotech. Bioeng. 18: 1557–1572.

    Google Scholar 

  109. 109

    Serieys, M., Goma, G., and Durand, G. 1978. Design and oxygen-transfer potential of a pulsed continuous tubular fermentor. Biotech. Bioeng. 20: 1393–1406.

    CAS  Google Scholar 

  110. 110

    Falch, E.A. and Gaden, E.L. 1969. A continuous, multistage tower fermentor, I. design and performance tests. Biotech. Bioeng. 11: 927–943.

    Google Scholar 

  111. 111

    Falch, E.A., and Gaden, E.L. 1970. A continuous, multistage tower fermentor. II. analysis of reactor performance. Biotech. Bioeng. 12: 465–482.

    Google Scholar 

  112. 112

    Greenshields, R.N. and Smith, E.L. 1971. Tower fermentation systems and their applications. Chem. Eng. 249: 182.

    Google Scholar 

  113. 113

    Dawson, P.S.S., Anderson, M., and York, A.E. 1971. The cycolne column culture vessel for batch and continuous, synchronous or asynchronous, culture of microorganisms. Biotech. Bioeng. 13: 865–876.

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Margaritis, A., Wallace, J. Novel Bioreactor Systems and Their Applications. Nat Biotechnol 2, 447–453 (1984).

Download citation

Further reading