Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A rapid diffusion immunoassay in a T-sensor


We have developed a rapid diffusion immunoassay that allows measurement of small molecules down to subnanomolar concentrations in <1 min. This competitive assay is based on measuring the distribution of a labeled probe molecule after it diffuses for a short time from one region into another region containing antigen-specific antibodies. The assay was demonstrated in the T-sensor, a simple microfluidic device that places two fluid streams in contact and allows interdiffusion of their components. The model analyte was phenytoin, a typical small drug molecule. Clinically relevant levels were measured in blood diluted from 10- to 400-fold in buffer containing the labeled antigen. Removal of cells from blood samples was not necessary. This assay compared favorably with fluorescence polarization immunoassay (FPIA) measurements. Numerical simulations agree well with experimental results and provide insight for predicting assay performance and limitations. The assay is homogeneous, requires <1 μl of reagents and sample, and is applicable to a wide range of analytes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diffusion immunoassay in a T-sensor.
Figure 2: Antibody binding affecting diffusive transport of antigen.
Figure 3: Phenytoin DIA with blood samples.
Figure 4: Diffusion immunoassay analysis.
Figure 5: A numerical model for DIA development.


  1. Kricka, L.J. Miniaturization of analytical systems. Clin. Chem. 44, 2008–2014 (1998).

    CAS  PubMed  Google Scholar 

  2. Regnier, F.E., He, B., Lin, S. & Busse, J. Chromatography and electrophoresis on chips: critical elements of future integrated, microfluidic analytical systems for life science. Trends Biotechnol. 17, 101–106 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Kopp, M.U., Mello, A.J. & Manz, A. Chemical amplification: continuous-flow PCR on a chip. Science 280, 1046–1048 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Schmalzing, D. et al. DNA typing in thirty seconds with a microfabricated device. Proc. Natl. Acad. Sci. USA 94, 10273–10278 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fu, A.Y., Spence, C., Scherer, A., Arnold, F.H. & Quake, S.R. A microfabricated fluorescence-activated cell sorter. Nat. Biotechnol. 17, 1109–1111 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Ekins, R. Immunoassay: recent developments and future directions. Nucl. Med. Biol. 21, 495–521 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Brown, E.N., McDermott, T.J., Bloch, K.J. & McCollom, A.D. Defining the smallest analyte concentration an immunoassay can measure. Clin. Chem. 42, 893–903 (1996).

    CAS  PubMed  Google Scholar 

  8. Hicks, J.M. Fluorescence immunoassay. Hum. Pathol. 15, 112–116 (1984).

    Article  CAS  PubMed  Google Scholar 

  9. Sherry, J. Environmental immunoassays and other bioanalytical methods: overview and update. Chemosphere 34, 1011–1025 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Chan, D.W. Clinical instrumentation (immunoassay analyzers). Anal. Chem. 67, R519–R524 (1995).

    Article  Google Scholar 

  11. Chiem, N.H. & Harrison, D.J. Microchip systems for immunoassay: an integrated immunoreactor with electrophoretic separation for serum theophylline determination. Clin. Chem. 44, 591–598 (1998).

    CAS  PubMed  Google Scholar 

  12. Schmalzing, D. & Nashabeh, W. Capillary electrophoresis based immunoassays: a critical review. Electrophoresis 18, 2184–2193 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Weigl, B.H. & Yager, P. Microfluidic diffusion-based separation and detection. Science 283, 346–347 (1999).

    Article  Google Scholar 

  14. Kamholz, A.E., Weigl, B.H., Finlayson, B.A. & Yager, P. Quantitative analysis of molecular interaction in a microfluidic channel: The T-Sensor. Anal. Chem. 71, 5340–5347 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Kamholz, A.E. & Yager, P. Theoretical analysis of molecular diffusion in pressure-driven flow in microfluidic channels. Biophys. J. 80, 155–160 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Paxton, J.W., Rowell, F.J. & Ratcliffe, J.G. Production and characterisation of antisera to diphenylhydantoin suitable for radioimmunoassay. J. Immunol. Methods 10, 317–327 (1976).

    Article  CAS  PubMed  Google Scholar 

  17. McGregor, A.R., Crookall-Greening, J.O., Landon, J. & Smith, D.S. Polarisation fluoroimmunoassay of phenytoin. Clin. Chim. Acta 83, 161–166 (1978).

    Article  CAS  PubMed  Google Scholar 

  18. Jolley, M.E. Fluorescence polarization immunoassay for the determination of therapeutic drug levels in human plasma. J. Anal. Toxicol. 5, 236–240 (1981).

    Article  CAS  PubMed  Google Scholar 

  19. Montgomery, M.R., Holtzman, J.L., Leute, R.K., Dewees, J.S. & Bolz, G. Determination of diphenylhydantoin in human serum by spin immunoassay. Clin. Chem. 21, 221–226 (1975).

    CAS  PubMed  Google Scholar 

  20. Booker, H.E. & Darcey, B.A. Enzymatic immunoassay vs. gas/liquid chromatography for determination of phenobarbital and diphenylhydantoin in serum. Clin. Chem. 21, 1766–1768 (1975).

    CAS  PubMed  Google Scholar 

  21. Peters, T. Jr. All about albumin: biochemistry, genetics, and medical applications. (Academic Press, Inc., San Diego, CA; 1996).

    Google Scholar 

  22. Anon. Data reduction of enzyme-immunoassay by log-logit curve. Lab. Med. 22, 877–879 (1991).

  23. Kamholz, A.E., Schilling, E.A. & Yager, P. Optical measurement of transverse molecular diffusion in a microchannel. Biophys. J. 80, 1967–1972 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maciel, R.J. Standard curve fitting in immunodiagnostics: a primer. J. Clin. Immunoassay 8, 98–106 (1985).

    Google Scholar 

  25. Fylstra, D., Lasdon, L., Watson, J. & Waren, A. Design and use of Microsoft Excel Solver. Interfaces 28, 29–55 (1998).

    Article  Google Scholar 

  26. Griffiths, A.D. et al. Human anti-self antibodies with high specificity from phage display libraries. EMBO J. 12, 725–734 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references


This work was supported by Micronics Inc., the Washington Technology Center, and DARPA MicroFlumes program contract no. N660001-97-C-8632. We would like to thank Dr. Mark Holl for the majority of the design and implementation of the flow cell and fluidics system, Cathy Cabrera for developing image analysis software, Dr. Alex Goldstein for characterization of chemicals useful for pretreating blood samples, and Dr. Shelli R. Dennis for assistance exploring data analysis software. We thank Dr. Margaret Kenny, Diane Zebert, and Dr. Cai Cai Wu for work leading to immunoassay development in the T-sensor. Paul Yager has a financial interest in Micronics, Inc.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Paul Yager.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hatch, A., Kamholz, A., Hawkins, K. et al. A rapid diffusion immunoassay in a T-sensor. Nat Biotechnol 19, 461–465 (2001).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing