Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Creation of genome-wide protein expression libraries using random activation of gene expression

Abstract

Here we report the use of random activation of gene expression (RAGE) to create genome-wide protein expression libraries. RAGE libraries containing only 5 × 106 individual clones were found to express every gene tested, including genes that are normally silent in the parent cell line. Furthermore, endogenous genes were activated at similar frequencies and expressed at similar levels within RAGE libraries created from multiple human cell lines, demonstrating that RAGE libraries are inherently normalized. Pools of RAGE clones were used to isolate 19,547 human gene clusters, 53% of which were novel when tested against public databases of expressed sequence tag (EST) and complementary DNA (cDNA). Isolation of individual clones confirmed that the activated endogenous genes can be expressed at high levels to produce biologically active proteins. The properties of RAGE libraries and RAGE expression clones are well suited for a number of biotechnological applications including gene discovery, protein characterization, drug development, and protein manufacturing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of gene expression using a RAGE vector.
Figure 2: Schematic diagrams of RAGE vectors.
Figure 3: Comparison of experimental and predicted transcript structure.

Similar content being viewed by others

References

  1. Adams, M.D. et al. Sequence identification of 2,375 human brain genes. Nature 355, 632–634 (1992).

    Article  CAS  Google Scholar 

  2. Hillier, L.D. et al. Generation and analysis of 380,000 human expressed sequence tags. Genome Res. 6, 807–828 (1996).

    Article  CAS  Google Scholar 

  3. Tanaka, T. et al. Construction of a normalized directionally cloned cDNA library from adult heart and analysis of 3040 clones by partial sequencing. Genomics 35, 231–235 (1996).

    Article  CAS  Google Scholar 

  4. Nomura, N. et al. Prediction of the coding sequences of unidentified human genes. I. The coding sequences of 40 new genes KIAA0001–KIAA0040) deduced by analysis of randomly sampled cDNA clones from human immature myeloid cell line KG-1. DNA Res. 1, 27–35 (1994).

    Article  CAS  Google Scholar 

  5. Diatchenko, L., Lukyanov, S., Lau, Y.F. & Siebert, P.D. Suppression subtractive hybridization: a versatile method for identifying differentially expressed genes. Methods Enzymol. 303, 349–380 (1999).

    Article  CAS  Google Scholar 

  6. Wan, J.S. & Erlander, M.G. Cloning differentially expressed genes by using differential display and subtractive hybridization. Methods Mol. Biol. 85, 45–68 (1997).

    CAS  PubMed  Google Scholar 

  7. Orr, S.L. et al. Isolation of unknown genes from human bone marrow by differential screening and single-pass cDNA sequence determination. Proc. Natl. Acad. Sci. USA 91, 11869–11873 (1994).

    Article  CAS  Google Scholar 

  8. Zhang, H., Zhang, R. & Liang, P. Differential screening of gene expression difference enriched by differential display. Nucleic Acids Res. 24, 2454–2455 (1996).

    Article  CAS  Google Scholar 

  9. Blumberg, B. & Belmonte, J.C. Subtractive hybridization and construction of cDNA libraries. Methods Mol. Biol. 97, 555–574 (1999).

    CAS  PubMed  Google Scholar 

  10. Dunham, I. et al. The DNA sequence of human chromosome 22. Nature 402, 489–495 (1999).

    Article  CAS  Google Scholar 

  11. Adams, M.D. et al. The genome sequence for Drosophila melanogaster. Science 287, 2185–2195 (2000).

    Article  Google Scholar 

  12. Mewes H.W. et al. Overview of the yeast genome. Nature 287, 7–65 (1997).

    Article  Google Scholar 

  13. The C. elegans sequencing consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018 (1998).

  14. Lander, E.S. et al. Initial sequencing and analysis of the human genome. International Human Genome Sequencing Consortium. Nature 409, 860–921 (2001).

    Article  CAS  Google Scholar 

  15. Venter, J. Craig et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  Google Scholar 

  16. Abdelilah-Seyfried, S. et al. A gain-of-function screen for genes that affect the development of the Drosophila adult external sensory organ. Genetics 155, 733–752 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Rorth, P. et al. Systematic gain-of-function genetics in Drosophila. Development 125, 1049–1057 (1998).

    CAS  PubMed  Google Scholar 

  18. Hay, B.A., Maile, R. & Rubin, G.M. P element insertion-dependent gene activation in the Drosophila eye. Proc. Natl. Acad. Sci. USA 94, 5195–5200 (1997).

    Article  CAS  Google Scholar 

  19. Ross-Macdonald, P. et al. Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature 402, 413–418 (1999).

    Article  CAS  Google Scholar 

  20. Neilan, E.G. & Barsh, G.S. Gene trap insertional mutagenesis in mice: new vectors and germ line mutations in two novel genes. Transgenic Res. 8, 451–458 (1999).

    Article  CAS  Google Scholar 

  21. Hardouin, N. & Nagy, A. Gene-trap-based target site for cre-mediated transgenic insertion. Genesis 26, 245–252 (2000).

    Article  CAS  Google Scholar 

  22. Zambrowicz, B.P. et al. Disruption and sequence identification of 2,000 genes in mouse embryonic stem cells. Nature 392, 608–611 (1998).

    Article  CAS  Google Scholar 

  23. Wiles, M.V. et al. Establishment of a gene-trap sequence tag library to generate mutant mice from embryonic stem cells. Nat. Genet. 24, 13–14 (2000).

    Article  CAS  Google Scholar 

  24. Friedrich, G. & Soriano, P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 5, 1513–1523 (1991).

    Article  CAS  Google Scholar 

  25. Niwa, H. et al. An efficient gene-trap method using poly A trap vectors and characterization of gene-trap events. J. Biochem. (Tokyo) 113, 343–349 (1993).

    Article  CAS  Google Scholar 

  26. Wurst, W. et al. A large-scale gene-trap screen for insertional mutations in developmentally regulated genes in mice. Genetics 139, 889–899 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bonaldo, P., Chowdhury, K., Stoykova, A., Torres, M. & Gruss, P. Efficient gene trap screening for novel developmental genes using IRES beta geo vector and in vitro preselection. Exp. Cell Res. 244, 125–136 (1998).

    Article  CAS  Google Scholar 

  28. Skarnes, W.C., Auerbach, B.A. & Joyner, A.L. A gene trap approach in mouse embryonic stem cells: the lacZ reported is activated by splicing, reflects endogenous gene expression, and is mutagenic in mice. Genes Dev. 6, 903–918 (1992).

    Article  CAS  Google Scholar 

  29. Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997).

    Article  CAS  Google Scholar 

  30. Xu, Y. & Uberbacher, E.C. Automated gene identification in large-scale genomic sequences. J. Comput. Biol. 4, 325–338 (1997).

    Article  CAS  Google Scholar 

  31. Xu, Y., Mural, R.J. & Uberbacher, E.C. Inferring gene structures in genomic sequences using pattern recognition and expressed sequence tags. Proc. Int. Conf. Intell. Syst. Mol. Biol. 5, 344–353 (1997).

    CAS  PubMed  Google Scholar 

  32. Mural, R.J., Parang, M., Shah, M., Snoddy, J. & Uberbacher, E.C. The Genome Channel: a browser to a uniform first-pass annotation of genomic DNA. Trends Genet. 15, 38–39 (1999).

    Article  CAS  Google Scholar 

  33. Kaufman, R.J. Selection and coamplification of heterologous genes in mammalian cells. Methods Enzymol. 185, 547–548 (1990).

    Google Scholar 

  34. Niall, H.D., Hogan, M.L., Sauer, R., Rosenblum, I.Y. & Greenwood, F.C. Sequence of pituitary and placental lactogenic and growth hormones: evolution from a primordial peptide by gene reduplication. Proc. Natl. Acad. Sci. USA 68, 866–869 (1971).

    Article  CAS  Google Scholar 

  35. Ealey, P.A. et al. The development of an eluted stain bioassay (ESTA) for human growth hormone. Growth Reg. 5, 36–44 (1995).

    CAS  Google Scholar 

  36. Ewing, B., Hillier, L., Michael C. Wendl, M.C. & Green, P. Base-calling of automated sequencer traces using phred: I. Accuracy assessment. Genome Res. 8, 175–185 (1998).

    Article  CAS  Google Scholar 

  37. Ewing, B. & Green, P. Base-calling of automated sequencer traces using phred: II. Error probabilities. Genome Res. 8, 186–194 (1998).

    Article  CAS  Google Scholar 

  38. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  39. Wu, T.D., Nevill-Manning, C.G. & Brutlag, D.L. Minimal-risk scoring matrices for sequence analysis. J. Comput. Biol. 6, 219–235 (1999).

    Article  CAS  Google Scholar 

  40. Wu T.D., Nevill-Manning, C.G. & Brutlag, D.L. Fast probabilistic analysis of sequence function using scoring matrices. Bioinformatics 16, 233–244 (2000).

    Article  CAS  Google Scholar 

  41. Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 28, 263–266 (2000).

    Article  CAS  Google Scholar 

  42. von Heijne, G. Membrane protein structure prediction, hydrophobicity analysis and the positive-inside rule. J. Mol. Biol. 225, 487–494 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Harrington.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrington, J., Sherf, B., Rundlett, S. et al. Creation of genome-wide protein expression libraries using random activation of gene expression. Nat Biotechnol 19, 440–445 (2001). https://doi.org/10.1038/88107

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/88107

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing