Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells

Abstract

The ubiquitin/proteasome-dependent proteolytic pathway is an attractive target for therapeutics because of its critical involvement in cell cycle progression and antigen presentation. However, dissection of the pathway and development of modulators are hampered by the complexity of the system and the lack of easily detectable authentic substrates. We have developed a convenient reporter system by producing N-end rule and ubiquitin fusion degradation (UFD)-targeted green fluorescent proteins that allow quantification of ubiquitin/proteasome-dependent proteolysis in living cells. Accumulation of these reporters serves as an early predictor of G2/M arrest and apoptosis in cells treated with proteasome inhibitors. Comparison of reporter accumulation and cleavage of fluorogenic substrates demonstrates that the rate-limiting chymotrypsin-like activity of the proteasome can be substantially curtailed without significant effect on ubiquitin-dependent proteolysis. These reporters provide a new powerful tool for elucidation of the ubiquitin/proteasome pathway and for high throughput screening of compounds that selectively modify proteolysis in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeting of GFP for proteasomal degradation.
Figure 2: Ub-X-GFP expression monitored by fluorescence intensity.
Figure 3: Accumulation of GFP reporter upon treatment with inhibitor.
Figure 4: Correlation between proteasomal degradation and cell growth.
Figure 5: Effect of different inhibitors on degradation of reporter.

Similar content being viewed by others

References

  1. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  Google Scholar 

  2. Finley, D. Ozkaynak, E. & Varshavsky, A. The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48, 1035–1046 (1987).

    Article  CAS  Google Scholar 

  3. Heinemeyer, W. Kleinschmidt, J.A. Saidowsky, J. Escher, C. & Wolf, D.H. Proteinase yscE, the yeast proteasome/multicatalytic–multifunctional proteinase: mutants unravel its function in stress-induced proteolysis and uncover its necessity for cell survival. EMBO J. 10 , 555–562 (1991).

    Article  CAS  Google Scholar 

  4. Rock, K.L. & Goldberg, A.L. Degradation of cell proteins and the generation of MHC class I- presented peptides. Annu. Rev. Immunol. 17, 739–779 ( 1999).

    Article  CAS  Google Scholar 

  5. Schwartz, A.L. & Ciechanover, A. The ubiquitin–proteasome pathway and pathogenesis of human diseases. Annu. Rev. Med. 50, 57–74 (1999).

    Article  CAS  Google Scholar 

  6. Bogyo, M. Gaczynska, M. & Ploegh, H.L. Proteasome inhibitors and antigen presentation. Biopolymers 43, 269–280 (1997).

    Article  CAS  Google Scholar 

  7. Lee, D.H. & Goldberg, A.L. Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol. 8, 397–403 (1998).

    Article  CAS  Google Scholar 

  8. Teicher, B.A., Ara, G., Herbst, R., Palombella, V.J. & Adams, J. The proteasome inhibitor PS-341 in cancer therapy. Clin. Cancer Res. 5, 2638–2645 (1999).

    CAS  PubMed  Google Scholar 

  9. Adams, J., et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. 59, 2615–2622 (1999).

    CAS  PubMed  Google Scholar 

  10. Meng, L., Kwok, B.H., Sin, N. & Crews, C.M. Eponemycin exerts its antitumor effect through the inhibition of proteasome function. Cancer Res. 59, 2798–2801 (1999).

    CAS  PubMed  Google Scholar 

  11. Meng, L. et al. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc. Natl. Acad. Sci. USA 96, 10403–10408 (1999).

    Article  CAS  Google Scholar 

  12. Bochtler, M., Ditzel, L., Groll, M., Hartmann, C. & Huber, R. The proteasome. Annu. Rev. Biophys. Biomol. Struct. 28, 295–317 ( 1999).

    Article  CAS  Google Scholar 

  13. Laney, J. & Hochstrasser, M. Substrate targeting in the ubiquitin system. Cell 97, 427– 430 (1999).

    Article  CAS  Google Scholar 

  14. Dick, T.P. et al. Contribution of proteasomal β-subunits to the cleavage of peptide substrates analyzed with yeast mutants. J. Biol. Chem. 273, 25637–25646 (1998).

    Article  CAS  Google Scholar 

  15. Kisselev, A.F., Akopian, T.N., Castillo, V. & Goldberg, A.L. Proteasome active sites allosterically regulate each other, suggesting a cyclical bite–chew mechanism for protein breakdown. Mol. Cell 4, 395–402 (1999).

    Article  CAS  Google Scholar 

  16. Dick, T.P. et al. Coordinated dual cleavages induced by the proteasome regulator PA28 lead to dominant MHC ligands. Cell 86, 253– 262 (1996).

    Article  CAS  Google Scholar 

  17. Bachmair, A., Finley, D. & Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179 –186 (1986).

    Article  CAS  Google Scholar 

  18. Johnson, E.S., Ma, P.C., Ota, I.M. & Varshavsky, A. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J. Biol. Chem. 270, 17442–17456 ( 1995).

    Article  CAS  Google Scholar 

  19. Gonda, D.K. et al. Universality and structure of the N-end rule. J. Biol. Chem. 264, 16700–16712 ( 1989).

    CAS  Google Scholar 

  20. Falnes, P.O. & Olsnes, S. Modulation of the intracellular stability and toxicity of diphtheria toxin through degradation by the N-end rule pathway. EMBO J. 17, 615–625 (1998).

    Article  CAS  Google Scholar 

  21. Jensen, T.J. et al. Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83, 129– 135 (1995).

    Article  CAS  Google Scholar 

  22. Bogyo, M. et al. Covalent modification of the active site threonine of proteasomal β-subunits and the Escherichia coli homolog HslV by a new class of inhibitors. Proc. Natl. Acad. Sci. USA 94, 6629– 6634 (1997).

    Article  CAS  Google Scholar 

  23. Bogyo, M., Shin, S., McMaster, J.S. & Ploegh, H.L. Substrate binding and sequence preference of the proteasome revealed by active-site-directed affinity probes. Chem. Biol. 5, 307– 320 (1998).

    Article  CAS  Google Scholar 

  24. Andre, P. et al. An inhibitor of HIV-1 protease modulates proteasome activity, antigen presentation, and T cell responses. Proc. Natl. Acad. Sci. USA 95 , 13120–13124 (1998).

    Article  CAS  Google Scholar 

  25. Schmidtke, G. et al. How an inhibitor of the HIV-I protease modulates proteasome activity. J. Biol. Chem. 274, 35734– 35740 (1999).

    Article  CAS  Google Scholar 

  26. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. & Prasher, D.C. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).

    Article  CAS  Google Scholar 

  27. Suzuki, T. & Varshavsky, A. Degradation signals in lysine–asparagine sequence space. EMBO J. 18, 6017– 6026 (1999).

    Article  CAS  Google Scholar 

  28. Lee, D.H. & Goldberg, A.L. Proteasome inhibitors cause induction of heat shock proteins and trehalose, which together confer thermotolerance in Saccharomyces cerevisiae. Mol. Cell. Biol. 18, 30–38 (1998).

    Article  CAS  Google Scholar 

  29. Orlowski, R.Z. The role of the ubiquitin–proteasome pathway in apoptosis. Cell Death Differ. 6, 303–313 (1999).

    Article  CAS  Google Scholar 

  30. Gaczynska, M., Rock, K.L. & Goldberg, A.L. γ-Interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature 365, 264–267 (1993).

    Article  CAS  Google Scholar 

  31. Nussbaum, A.K. et al. Cleavage motifs of the yeast 20S proteasome β-subunits deduced from digests of enolase 1. Proc. Natl. Acad. Sci. USA 95, 12504–12509 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Hidde Ploegh and Benedikt Kessler for providing the peptide-vinyl sulfones, Bo Öberg for the ritonavir, Stefan Jentsch for the Ub-Pro-βGal plasmid, and Anatoly Sharipo and Teresa Frisan for helpful discussions. This work was supported by grants awarded by the Swedish Cancer Society, the Swedish Foundation of Strategy Research, and the Hedlund Foundation, Stockholm, Sweden. N.P.D. is supported by a postdoctoral fellowship awarded by the European Commission Training and Mobility Program on “The central role of the ubiquitin-proteasome system in regulatory processes involved in immunological, inflammatory, endocrinological and malignant disorders,” contract no. ERBFMRXCT960026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria G. Masucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dantuma, N., Lindsten, K., Glas, R. et al. Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells. Nat Biotechnol 18, 538–543 (2000). https://doi.org/10.1038/75406

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75406

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing