Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Expression of an engineered form of recombinant procollagen in mouse milk

Abstract

We have examined the suitability of the mouse mammary gland for expression of novel recombinant procollagens that can be used for biomedical applications. We generated transgenic mouse lines containing cDNA constructs encoding recombinant procollagen, along with the α and β subunits of prolyl 4-hydroxylase, an enzyme that modifies the collagen into a form that is stable at body temperature. The lines expressed relatively high levels (50–200 μg/ml) of recombinant procollagen in milk. As engineered, the recombinant procollagen was shortened and consisted of a proα2(I) chain capable of forming a triple-helical homotrimer not normally found in nature. Analysis of the product demonstrated that (1) the proα chains formed disulphide-linked trimers, (2) the trimers contained a thermostable triple-helical domain, (3) the N-propeptides were aligned correctly, and (4) the expressed procollagen was not proteolytically processed to collagen in milk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transgene constructs and recombinant protein schematic diagram.
Figure 2: Southern and northern blot analysis of transgenic lines.
Figure 3: Recombinant procollagen expression in the milk of transgenic mice.
Figure 4: Chymotrypsin-trypsin treatment—helix thermostability determination.
Figure 5: Expressed procollagens are trimers composed of intermolecularly disulphide-bonded monomers.
Figure 6: N-proteinase cleavage of recombinant procollagen.

Similar content being viewed by others

References

  1. Kadler, K.E. Extracellular matrix 1: fibril-forming collagens. Protein Profile 2, 491–619 ( 1995).

    CAS  PubMed  Google Scholar 

  2. Prockop, D.J. & Kivirikko, K.I. Collagens: molecular biology, diseases and potential for therapy. Ann. Rev. Biochem. 64, 403–434 (1995).

    Article  CAS  Google Scholar 

  3. Kivirikko, K.I., Myllyla, R. & Pihlajaniemi, T. in Post-translational Modifications of Proteins (eds Harding, J.J. & Crabbe, M.J.C) 1–51 (CRC Press, Boca Raton, FL, 1992).

    Google Scholar 

  4. Berg, R.A. & Prockop, D.J. The thermal transition of a non-hydroxylated form of collagen. Evidence for a role for hydroxyproline in stabilising the triple helix of collagen. Biochem. Biophys. Res. Commun. 52, 115–120 (1973).

    Article  CAS  Google Scholar 

  5. Vuorela, A., Myllyharju, J., Nissi, R., Pihlajaniemi, T. & Kivirikko, K.I. Assembly of human prolyl 4-hydroxylase and type III collagen in the yeast Pichia pastoris: formation of a stable enzyme tetramer requires co-expression with collagen and assembly of a stable collagen requires co-expression with prolyl 4-hydroxylase. EMBO J. 16, 6702–6712 ( 1997).

    Article  CAS  Google Scholar 

  6. Fertala, A. et al. Synthesis of recombinant human procollagen II in a stably transfected tumour cell line (HT1080). Biochem. J. 298, 31– 37 (1994).

    Article  CAS  Google Scholar 

  7. Fichard, A., Tillet, E., Delacoux, F., Garrone, R. & Ruggiero, F. Human recombinant α1(V) collagen chain—homotrimeric assembly and subsequent processing. J. Biol. Chem. 272, 30083–30087 (1997).

    Article  CAS  Google Scholar 

  8. Arnold, W.V. et al. A cDNA cassette system for the synthesis of recombinant procollagens. Variants of procollagen II lacking a D-period are secreted as triple-helical monomers. Matrix Biol. 16, 105– 116 (1997).

    Article  CAS  Google Scholar 

  9. Vuori, K., Pihlajaniemi, T., Marttila, M. & Kivirikko, K.I. Characterization of the human prolyl 4-hydroxylase tetramer and its multifunctional protein disulphide isomerase subunit synthesized in a baculovirus expression system. Proc. Natl. Acad. Sci. USA 89, 7467 –7470 (1992).

    Article  CAS  Google Scholar 

  10. Lamberg, A. et al. Characterization of human type III collagen expressed in a baculovirus system—production of a protein with a stable triple helix requires coexpression with the two types of recombinant prolyl 4-hydroxylase subunit. J. Biol. Chem. 271, 11988–11995 (1996).

    Article  CAS  Google Scholar 

  11. Colman, A. Production of therapeutic proteins in the milk of transgenic livestock. Biochemical Society Symp. 63, 141– 147 (1998).

    CAS  Google Scholar 

  12. Carver, A.S. et al. Transgenic livestock as bioreactors—stable expression of human alpha-1-antitrypsin by a flock of sheep. Bio/Technology 11, 1263–1270 (1993).

    CAS  PubMed  Google Scholar 

  13. Prunkard, D. et al. High level expression of recombinant human fibrinogen in the milk of transgenic mice. Nat. Biotechnol. 14, 867–871 (1996).

    Article  CAS  Google Scholar 

  14. Yarus, S. et al. Secretion of unprocessed human surfactant protein B in milk of transgenic mice. Transgenic Res. 6, 51– 57 (1997).

    Article  CAS  Google Scholar 

  15. Stromqvist, M. et al. Recombinant human extracellular superoxide dismutase produced in milk of transgenic rabbits. Transgenic Res. 6, 271–278 (1997).

    Article  CAS  Google Scholar 

  16. Paleyanda, R.K. et al. Transgenic pigs produce functional human factor VIII in milk. Nat. Biotechnol. 15, 971– 975 (1997).

    Article  CAS  Google Scholar 

  17. Van-Cott, K.E. et al. Affinity purification of biologically active and inactive forms of recombinant human protein C produced in porcine mammary gland. J Mol Recognit. 9, 407–414 (1996).

    Article  CAS  Google Scholar 

  18. Schnieke, A.E. et al. 1997. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278, 2130–2133.

    Article  CAS  Google Scholar 

  19. Lees, J.F., Tasab, M. & Bulleid, N.J. Identification of the molecular recognition sequence which determines the type-specific assembly of procollagen. EMBO J. 16, 908–916 ( 1997).

    Article  CAS  Google Scholar 

  20. Bruckner, P. & Prockop, D.J. Proteolytic enzymes as probes for the triple-helical conformation of procollagen. Anal. Biochem. 110, 360–368 ( 1981).

    Article  CAS  Google Scholar 

  21. Berg, R.A. & Prockop, D.J. The thermal transition of a non-hydroxylated form of collagen. Evidence for a role for hydroxyproline in stabilizing the triple-helix of collagen. Biochem. Biophys. Res. Commun. 52, 115–119 (1973).

    Article  CAS  Google Scholar 

  22. Bulleid, N.J., Wilson, R. & Lees, J.F. Type III procollagen assembly in semi-intact cells: chain association, nucleation and triple-helix folding do not require formation of inter-chain disulphide bonds but triple-helix nucleation does require hydroxylation. Biochem J. 317, 195–202 (1996).

    Article  CAS  Google Scholar 

  23. Dombrowski, K.E. & Prockop, D.J. Cleavage of type-I and type-II procollagens by type-I/II procollagen N-proteinase—correlation of kinetic constants with the predicted conformations of procollagen substrates. J Biol. Chem. 263, 16545– 16552 (1998).

    Google Scholar 

  24. Toman, D. et al. Production of human type I procollagen homotrimers in transgenic mouse milk, pV-14 in Meeting Abstracts of the Sixth International Conference on the Molecular Biology and Pathology of the Matrix (Jefferson Institute of Molecular Medicine, Philadelphia, PA, June 16–19, 1996).

    Google Scholar 

  25. Myllyharju, J. et al. Expression of wild-type and modified proα chains of human type I procollagen in insect cells leads to the formation of stable [α1(I)] 2.α2(I) collagen heterotrimers and [α1(I)]3 homotrimers but not [α2(I)]3 homotrimers. J. Biol. Chem. 272, 21824–21830 (1997).

    Article  CAS  Google Scholar 

  26. Lees, J.F. & Bulleid, N.J. The role of cysteine residues in the folding and association of the COOH-terminal propeptide of types I and II procollagen. J. Biol. Chem. 269, 24354–24360 (1994).

    CAS  PubMed  Google Scholar 

  27. Horton, R.M. in Methods in Molecular Biology 15, PCR Protocols:Current Methods and Applications (ed White, B.A.) 251–262 (Humana Press,Totowa, NJ, 1993).

    Book  Google Scholar 

  28. John, D.C.A., Grant, M.E. & Bulleid, N.J. Cell-free synthesis and assembly of prolyl 4-hydroxylase; the role of the β-subunit (PDI) in preventing misfolding and aggregation of the α-subunit. EMBO J. 12, 1587 –1595 (1993).

    Article  CAS  Google Scholar 

  29. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular cloning: a laboratory manual 2nd edn (Cold Spring Harbor Press, New York, 1989).

    Google Scholar 

  30. Miller, E.J. & Rhodes, R.K. Preparation and characterisation of different types of collagen. Methods Enzymol. 82 , 33–64 (1982).

    Article  CAS  Google Scholar 

  31. Terlink, T., Tavenier, P. & Netelenbos, J.C. Selective determination of hydroxyproline in urine by high-performance liquid chromatography using pre-column derivatisation. Clinica Chim Acta 183, 309– 316 (1989).

    Article  Google Scholar 

  32. Kivirikko, K.I., Laitenen, O. & Prockop, D.J. Modifications of a specific assay for hydroxyproline in urine. Anal. Biochem. 19, 249– 255 (1967).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Yvonne Gibson and the PPL small animal unit for the production of transgenic mice. K.E.K. is a recipient of a Senior Research Fellowship from the Wellcome Trust (019512). N.J.B. is a recipient of a Senior Research Fellowship from the Royal Society. An MRC-LINK cell engineering grant (G9623358) generously supported the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil J. Bulleid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

John, D., Watson, R., Kind, A. et al. Expression of an engineered form of recombinant procollagen in mouse milk. Nat Biotechnol 17, 385–389 (1999). https://doi.org/10.1038/7945

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/7945

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing